Advertisement

Arthroskopie

, Volume 28, Issue 1, pp 18–25 | Cite as

Riss des vorderen Kreuzbandes

Biomechanische Auswirkungen auf das Kniegelenk
  • M. Herbort
  • C. Fink
Leitthema
  • 787 Downloads

Zusammenfassung

Hintergrund

Das vordere Kreuzband (VKB) hat einen großen Einfluss auf die Gelenkkinematik. Insbesondere der komplexe Aufbau des VKB ermöglicht die funktionelle Stabilisierung des Kniegelenks.

Biomechanik des intakten VKB

Die Hauptaufgabe des VKB ist sowohl die Stabilisierung gegen eine anteriore tibiale Translations(ATT)-Kraft als auch die Bewahrung der Rotationsstabilität. Diese beiden Stabilisationsaufgaben können mithilfe des Lachman- und des Pivot-Shift-Tests valide untersucht werden. Während die Stabilisierung des Kniegelenks gegen eine ATT in Flexionsstellung den anteromedialen Faseranteilen des VKB zugeordnet werden kann, sind die posterolateralen Faseranteile in extensionsnaher Stellung für die Rotationsstabilisierung verantwortlich.

Kinematik nach VKB-Insuffizienz

Nach einer Ruptur des VKB besteht v. a. eine Kombination aus vorderer Instabilität mit vermehrter ATT und einer Rotationsinstabilität. Das Ausmaß der Instabilität ist bei Teilrupturen vom Ausmaß der betroffenen Faseranteile abhängig. Eine bestehende VKB-Insuffizienz hat weitreichende Auswirkungen auf das Gelenk. Neben einer vermehrten Belastung des Seitenbandapparates und der Meniskushinterhörner führt eine vermehrte Translations- und Rotationsinstabilität zu einer Verlagerung der Hauptbelastungspunkte im Kniegelenk und somit zu einer Überlastung bestimmter Knorpelareale.

Kinematik von VKB-Rekonstruktionen

Die Wiederherstellung der Kinematik des Kniegelenks mithilfe einer VKB-Rekonstruktion ist von der möglichst anatomiegetreuen Rekonstruktion des VKB und seiner Insertion abhängig. Vermehrte Berücksichtigung der anteromedialen und posterolateralen Anteile des VKB führen zu einer verbesserten Stabilität des Kniegelenks.

Schlüsselwörter

Rekonstruktion des vorderen Kreuzbandes Kinematik Biomechanische Phänomene Anteriore tibiale Translation Ruptur 

Anterior cruciate ligament rupture

Biomechanical consequences for the knee joint

Abstract

Background

The anterior cruciate ligament (ACL) greatly influences joint kinematics. In particular, the complex structure of the ACL enables functional stabilization of the knee joint.

Biomechanics of the intact ACL

The main task of the anterior cruciate ligament is to stabilize against anterior tibial translation (ATT) as well as the preservation of rotational stability. These two stabilization tasks can be examined using the Lachman and the pivot–shift tests. While stabilization of the knee joint against ATT can be assigned to the anteromedial fibers of the ACL in flexion, the posterolateral fibers are responsible for rotation stabilization in near extension.

Kinematics after ACL insufficiency

Following rupture of the anterior cruciate ligament, there is mainly a combination of anterior instability with increased anterior tibial translation and rotation instability. The degree of instability after partial ACL ruptures depends on the extent of the affected fibers. Existing ACL insufficiency has far-reaching effects on knee joint kinematics. In addition to increased load on the medial and lateral collateral ligaments and the posterior horn of the meniscus, increased translational and rotational instability leads to a shift of the main stress points in the knee joint and, thus, to an overload of certain areas of the cartilage.

Kinematics of ACL reconstruction

The recovery of the kinematics of the knee joint by ACL reconstruction depends of the anatomical reconstruction of the complex ACL fiber structure and ACL insertion. Increased consideration of the anteromedial and posterolateral bundle portions of the ACL leads to improved stability of the knee joint.

Keywords

Anterior cruciate ligament reconstruction Kinematics Biomechanical phenomena Anterior tibial translation Rupture 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Herbort ist als Berater für Karl Storz tätig. C. Fink ist zuständig für die Lizenzgebühren bei Karl Stolz, übernimmt Beratertätigkeiten für Karl Scholz und Synthes/DePuy/Mitek und ist für OSM Research Foundation in der Forschung tätig. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren

Literatur

  1. 1.
    Allen CR, Wong EK, Livesay GA et al (2000) Importance of the medial meniscus in the anterior cruciate ligament‐deficient knee. J Orthop Res 18:109–115PubMedCrossRefGoogle Scholar
  2. 2.
    Amis AA, Bull A, Lie D (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15(1):29−35CrossRefGoogle Scholar
  3. 3.
    Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91:95–101PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Beynnon B, Howe JG, Pope MH et al (1992) The measurement of anterior cruciate ligament strain in vivo. Int Orthop 16:1–12PubMedCrossRefGoogle Scholar
  5. 5.
    Bull A, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5(3):141−158CrossRefGoogle Scholar
  6. 6.
    Chen CH, Li JS, Hosseini A et al (2012) Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait Posture 35(3):467−471PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Christel PS, Akgun U, Yasar T (2012) The contribution of each anterior cruciate ligament bundle to the Lachman test a cadaver investigation. J Bone Joint Surg Br 94-B(1):68−74Google Scholar
  8. 8.
    Claes S, Vereecke E, Maes M et al (2013) Anatomy of the anterolateral ligament of the knee. J Anat 223:321–328PubMedCrossRefGoogle Scholar
  9. 9.
    Daniel DM, Stone ML, Dobson BE (1994) Fate of the ACL-injured patient a prospective outcome study. Am J Sports Med 22(5):632−644PubMedCrossRefGoogle Scholar
  10. 10.
    Diermann N, Schumacher T, Schanz S et al (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129:353–358PubMedCrossRefGoogle Scholar
  11. 11.
    Fuentes A, Hagemeister N, Ranger P, Heron T (2011) Gait adaptation in chronic anterior cruciate ligament-deficient patients: Pivot-shift avoidance gait. Clin Biomech 26(2):181−187CrossRefGoogle Scholar
  12. 12.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45PubMedGoogle Scholar
  13. 13.
    Gardinier ES, Manal K, Buchanan TS (2012) Gait and neuromuscular asymmetries after acute ACL rupture. Med Sci Sports Exerc 44(8):1490PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gardinier ES, Manal K, Buchanan TS, Snyder-Mackler L (2013) Altered loading in the injured knee after ACL rupture. J Orthop Res 31:458–464 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Giuliani JR, Kilcoyne KG, Rue J-PH (2009) Anterior cruciate ligament anatomy: a review of the anteromedial and posterolateral bundles. J Knee Surg 22:148–154PubMedCrossRefGoogle Scholar
  16. 16.
    Hart JM, Ko J, Konold T, Pietrosimione B (2010) Sagittal plane knee joint moments following anterior cruciate ligament injury and reconstruction: a systematic review. Clin Biomech 25(4):277−283CrossRefGoogle Scholar
  17. 17.
    Herbort M, Lenschow S, Fu FH et al (2010) ACL mismatch reconstructions: influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics. Knee Surg Sports Traumatol Arthrosc 18:1551–1558PubMedCrossRefGoogle Scholar
  18. 18.
    Herbort M, Raschke MJ (2011) Ligament ruptures of the lower extremity in the elderly. Unfallchirurg 114:671–680PubMedCrossRefGoogle Scholar
  19. 19.
    Herbort M, Tecklenburg K, Zantop T et al (2013) Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone-patellar tendon-bone graft configuration versus a round hamstring graft. Arthroscopy 29:1981–1990PubMedCrossRefGoogle Scholar
  20. 20.
    Hurd WJ, Snyder-Mackler L (2007) Knee instability after acute ACL rupture affects movement patterns during the mid‐stance phase of gait. J Orthop Res 25:1369–1377PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599PubMedCrossRefGoogle Scholar
  22. 22.
    Kanamori A, Sakane M, Zeminski J et al (2000) In-situ force in the medial and lateral structures of intact and ACL-deficient knees. J Orthop Sci 5:567–571PubMedCrossRefGoogle Scholar
  23. 23.
    Khandha A, Gardinier E, Capin J et al (2014) Do decreased medial compartment contact forces and loading asymmetries exist after anterior cruciate ligament reconstruction and rehabilitation? – A 5 year follow-up study. Osteoarthr Cartil 22:S103CrossRefGoogle Scholar
  24. 24.
    Kittl DC, Weiler A, Amis AA (2014) Anterolaterale Rotationsinstabilität. Arthroskopie 27:170–176CrossRefGoogle Scholar
  25. 25.
    Kocher MS, Steadman JR, Briggs KK et al (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634PubMedCrossRefGoogle Scholar
  26. 26.
    Kondo E, Merican AM, Yasuda K, Amis AA (2014) Biomechanical analysis of knee laxity with isolated anteromedial or posterolateral bundle – deficient anterior cruciate ligament. Arthroscopy 30(3):335−343PubMedCrossRefGoogle Scholar
  27. 27.
    Kopf S, Musahl V, Bignozzi S et al (2014) In vivo kinematic evaluation of anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 42:2172–2177. doi:10.1177/0363546514538958PubMedCrossRefGoogle Scholar
  28. 28.
    Krych AJ, Pitts RT, Dajani KA et al (2010) Surgical repair of meniscal tears with concomitant anterior cruciate ligament reconstruction in patients 18 years and younger. Am J Sports Med 38:976–982PubMedCrossRefGoogle Scholar
  29. 29.
    Levy AS, Meier SW, Steven W (2003) Approach to cartilage injury in the anterior cruciate ligament-deficient knee. Orthop Clin North Am 34(1):149−167PubMedCrossRefGoogle Scholar
  30. 30.
    Li G, Moses JM, Papannagari R et al (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 88:1826–1834PubMedCrossRefGoogle Scholar
  31. 31.
    Loh JC, Fukuda Y, Tsuda E, Steadman RJ (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o“clock and 10 o“clock femoral tunnel placement. Arthroscopy 19(3):297−304PubMedCrossRefGoogle Scholar
  32. 32.
    Lorbach O, Kieb M, Domnick C et al (2014) Biomechanical evaluation of knee kinematics after anatomic single- and anatomic double-bundle ACL reconstructions with medial meniscal repair. Knee Surg Sports Traumatol Arthrosc 1–8Google Scholar
  33. 33.
    Markolf KL, Mensch JS (1976) Stiffness and laxity of the knee – the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58:583–594PubMedGoogle Scholar
  34. 34.
    Musahl V, Kopf S, Rabuck S et al (2012) Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sports Traumatol Arthrosc 20:793–800PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamae A, Ochi M, Deie M et al (2010) Biomechanical function of anterior cruciate ligament remnants: how long do they contribute to knee stability after injury in patients with complete tears? Arthroscopy 26:1577–1585 PubMedCrossRefGoogle Scholar
  36. 36.
    Ochi M, Adachi N, Deie M, Kanaya A (2006) Anterior cruciate ligament augmentation procedure with a 1-incision technique: anteromedial bundle or posterolateral bundle reconstruction. Arthroscopy 22(4):463-e1PubMedCrossRefGoogle Scholar
  37. 37.
    Petersen W, Zantop T (2007) Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res 454:35–47PubMedCrossRefGoogle Scholar
  38. 38.
    Petrigliano FA, Musahl V, Suero EM et al (2011) Effect of meniscal loss on knee stability after single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:86–93 CrossRefGoogle Scholar
  39. 39.
    Rudy TW, Livesay GA, Woo S, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29(10):1357−1360PubMedCrossRefGoogle Scholar
  40. 40.
    Sakane M, Fox RJ, Woo S et al (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15:285–293PubMedCrossRefGoogle Scholar
  41. 41.
    Siebold R, Ellert T, Metz S, Metz J (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24:154–161 PubMedCrossRefGoogle Scholar
  42. 42.
    Smigielski R, Zdanowicz U, Drwięga M et al (2014) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 1–8Google Scholar
  43. 43.
    Jiang W, Gao S-G, Li K-H et al (2012) Impact of Partial and complete rupture of anterior cruciate ligament on medial meniscus: a cadavaric study. Indian J Orthop 46:514–519 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Wellsandt E, Gardinier E, Manal K et al (2014) Association of joint moments and contact forces with early knee joint osteoarthritis after acl injury and reconstruction. Osteoarthr Cartil 22:S86–S87CrossRefGoogle Scholar
  45. 45.
    Woo SL-Y, Kanamori A, Zeminski J et al (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84-A:907–914Google Scholar
  46. 46.
    Woo SL-Y, Wu C, Dede O et al (2006) Biomechanics and anterior cruciate ligament reconstruction. J Orthop Surg Res 1:2PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Yagi M, Wong EK, Kanamori A, Debski RE (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660−666PubMedGoogle Scholar
  48. 48.
    Zantop T, Herbort M, Raschke MJ et al (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227PubMedCrossRefGoogle Scholar
  49. 49.
    Zantop T, Schumacher T, Diermann N et al (2007) Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006. Arch Orthop Trauma Surg 127:743–752PubMedCrossRefGoogle Scholar
  50. 50.
    Zantop T, Schumacher T, Schanz S et al (2010) Double-bundle reconstruction cannot restore intact knee kinematics in the ACL/LCL-deficient knee. Arch Orthop Trauma Surg 130:1019–1026PubMedCrossRefGoogle Scholar
  51. 51.
    o A (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 73:260–267Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Klinik für Unfall-, Hand- und WiederherstellungschirurgieUniversitätsklinik MünsterMünsterDeutschland
  2. 2.Institut für Sportmedizin, Alpinmedizin und Gesundheitstourismus/UMIT, OSMI – Division für Sportmedizin des Bewegungsapparates und VerletzungspräventionSportsclinic AustriaInnsbruckÖsterreich

Personalised recommendations