Skip to main content
Log in

Grundlagen biologischer Augmentationstechniken

Vom Wachstumsfaktor bis zur Stammzelle

Biologics in orthopaedic surgery

From growth factors to stem cell application

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Hintergrund

Der Heilungsprozess von Geweben ist ein höchst komplexer Vorgang. Die primären biomechanischen Qualitäten von orthopädischen Rekonstruktionstechniken konnten in den letzten Jahren zwar sukzessive weiterentwickelt werden, die Einheilung erfolgt jedoch häufig durch die Produktion von biomechanisch minderwertigem Narbengewebe. Daher ist die Versagensquote nach wie vor erhöht. Biologische Augmentationen, z. B. durch Wachstumsfaktoren, Plasmakonzentrate oder Zellen, sind vielversprechende Ansätze, um die Heilungsverläufe zu beschleunigen, eine verbesserte Qualität des Gewebes zu erzeugen oder auch Gewebsdefekte zu überbrücken.

Ergebnisse

Die meisten biologischen Augmentationstechniken befinden sich noch im experimentellen Stadium, so dass ihre Effekte in der klinischen Anwendung noch nicht abschließend beurteilt werden können.

Schlussfolgerung

Dieser Artikel soll einen kurzen Überblick über die Grundlagen der unterschiedlichen biologischen Augmentationsverfahren bieten.

Abstract

Background

The healing process of tissue is very complex. The primary biomechanical qualities of orthopedic reconstruction techniques have been successively improved in recent years, but the healing process often results in the production of biomechanically inferior scar tissue, leading to an increased failure rate. Biological augmentation, such as with growth factors, plasma concentrates or cells represent promising approaches to accelerate healing processes, to produce improved quality of reconstructed tissue and to reconstruct larger tissue defects.

Results

Most of these techniques are still in the experimental stage. Therefore, their effects in clinical practice cannot yet be finally assessed.

Conclusion

This article provides a brief overview of the basic principles of some of these biological augmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Agung M, Ochi M, Yanada S et al (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14:1307–1314

    Article  PubMed  Google Scholar 

  2. Awad HA, Boivin GP, Dressler MR et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431

    Article  CAS  PubMed  Google Scholar 

  3. Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    Article  PubMed  Google Scholar 

  4. Beane OS, Darling EM (2012) Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng 40:2079–2097

    Article  PubMed  Google Scholar 

  5. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  CAS  PubMed  Google Scholar 

  6. Chen TS, Lai RC, Lee MM et al (2009) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38:215–224

    Article  PubMed  Google Scholar 

  7. Cheung EV, Silverio L, Sperling JW (2010) Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat R 468:1476–1484

    Article  Google Scholar 

  8. Choi BH, Zhu SJ, Kim BY et al (2005) Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int J Oral Maxillofac Surg 34:420–424

    Article  PubMed  Google Scholar 

  9. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 27:158–167

    Article  Google Scholar 

  10. Ehnert S, Baur J, Schmitt A et al (2010) TGF-beta1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 5:e14073

    Article  PubMed  Google Scholar 

  11. Fortier LA, Barker JU, Strauss EJ et al (2011) The role of growth factors in cartilage repair. Clin Orthop Relat R 469:2706–2715

    Article  Google Scholar 

  12. Foster TE, Puskas BL, Mandelbaum BR et al (2009) Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med 37:2259–2272

    Article  PubMed  Google Scholar 

  13. Ghannam S, Pene J, Torcy-Moquet G et al (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312

    Article  CAS  PubMed  Google Scholar 

  14. Graham S, Leonidou A, Lester M et al (2009) Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin Investig Drugs 18:1633–1654

    Article  CAS  PubMed  Google Scholar 

  15. Granero-Molto F, Weis JA, Miga MI et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898

    Article  CAS  PubMed  Google Scholar 

  16. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937

    Article  CAS  PubMed  Google Scholar 

  17. Inagaki Y, Higashiyama R, Okazaki I (2007) Treatment strategy for liver fibrosis through recruitment and differentiation of bone marrow stem/progenitor cells. Hepatol Res 37:991–993

    Article  PubMed  Google Scholar 

  18. Isaac C, Gharaibeh B, Witt M et al (2012) Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elbow Surg 21:181–190

    Article  PubMed  Google Scholar 

  19. Kato T, Kawaguchi H, Hanada K et al (1998) Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res 16:654–659

    Article  CAS  PubMed  Google Scholar 

  20. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146

    Article  CAS  PubMed  Google Scholar 

  21. Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398

    Article  PubMed  Google Scholar 

  22. Levesque JP, Hendy J, Takamatsu Y et al (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111:187–196

    CAS  PubMed  Google Scholar 

  23. Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84-A:1032–1044

    Google Scholar 

  24. Lopez-Vidriero E, Goulding KA, Simon DA et al (2010) The use of platelet-rich plasma in arthroscopy and sports medicine: optimizing the healing environment. Arthroscopy 26:269–278

    Article  PubMed  Google Scholar 

  25. Mafi R, Hindocha S, Mafi P et al (2011) Sources of adult mesenchymal stem cells applicable for musculoskeletal applications – a systematic review of the literature. Open Orthop J 5(Suppl 2):242–248

    Article  PubMed  Google Scholar 

  26. Manning CN, Kim HM, Sakiyama-Elbert S et al (2011) Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop Res 29:1099–1105

    Article  CAS  PubMed  Google Scholar 

  27. Marx RE (2001) Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent 10:225–228

    Article  CAS  PubMed  Google Scholar 

  28. Mazzocca AD, Mccarthy MB, Chowaniec DM et al (2012) Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am 94:308–316

    Article  PubMed  Google Scholar 

  29. Mazzocca AD, Mccarthy MB, Chowaniec DM et al (2012) The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells. Am J Sports Med 40:1742–1749

    Article  PubMed  Google Scholar 

  30. Mazzucco L, Balbo V, Cattana E et al (2009) Not every PRP-gel is born equal. Evaluation of growth factor availability for tissues through four PRP-gel preparations: Fibrinet, RegenPRP-Kit, Plateltex and one manual procedure. Vox Sang 97:110–118

    Article  CAS  PubMed  Google Scholar 

  31. Molloy T, Wang Y, Murrell G (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33:381–394

    Article  PubMed  Google Scholar 

  32. Montgomery SR, Petrigliano FA, Gamradt SC (2011) Biologic augmentation of rotator cuff repair. Curr Rev Musculoskelet Med 4:221–230

    Article  PubMed  Google Scholar 

  33. Nakamura T, Hara Y, Tagawa M et al (1998) Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res 13:942–949

    Article  CAS  PubMed  Google Scholar 

  34. Nauth A, Giannoudis PV, Einhorn TA et al (2010) Growth factors: beyond bone morphogenetic proteins. J Orthop Trauma 24:543–546

    Article  PubMed  Google Scholar 

  35. Nikolidakis D, Jansen JA (2008) The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng Part B Rev 14:249–258

    Article  CAS  PubMed  Google Scholar 

  36. Omae H, Sun YL, An KN et al (2012) Engineered tendon with decellularized xenotendon slices and bone marrow stromal cells: an in vivo animal study. J Tissue Eng Regen Med 6:238–244

    Article  CAS  PubMed  Google Scholar 

  37. Oyagi S, Hirose M, Kojima M et al (2006) Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 44:742–748

    Article  CAS  PubMed  Google Scholar 

  38. Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694

    Article  CAS  PubMed  Google Scholar 

  39. Porada CD, Almeida-Porada G (2010) Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 62:1156–1166

    Article  CAS  PubMed  Google Scholar 

  40. Radomsky ML, Aufdemorte TB, Swain LD et al (1999) Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res 17:607–614

    Article  CAS  PubMed  Google Scholar 

  41. Rodeo SA (2007) Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg 16:S191–S197

    Article  PubMed  Google Scholar 

  42. Schmitt A, Van Griensven M, Imhoff A et al (2012) Application of stem cells in orthopedics. Stem Cells Int (in Druck)

  43. Schneider BS, Tiidus PM (2007) Neutrophil infiltration in exercise-injured skeletal muscle: how do we resolve the controversy? Sports Med 37:837–856

    Article  PubMed  Google Scholar 

  44. Shabbir A, Zisa D, Suzuki G et al (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296:H1888–H1897

    Article  CAS  PubMed  Google Scholar 

  45. Sheth U, Simunovic N, Klein G et al (2012) Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am 94:298–307

    Article  PubMed  Google Scholar 

  46. Sundman EA, Cole BJ, Fortier LA (2011) Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med 39:2135–2140

    Article  PubMed  Google Scholar 

  47. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  48. Tay LX, Ahmad RE, Dashtdar H et al (2012) Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am J Sports Med 40:83–90

    Article  PubMed  Google Scholar 

  49. Trippel SB (1997) Growth factors as therapeutic agents. Instr Course Lect 46:473–476

    CAS  PubMed  Google Scholar 

  50. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  PubMed  Google Scholar 

  51. Walz L, Salzmann GM, Fabbro T et al (2008) The anatomic reconstruction of acromioclavicular joint dislocations using 2 TightRope devices: a biomechanical study. Am J Sports Med 36:2398–2406

    Article  PubMed  Google Scholar 

  52. Wang L, Li Y, Chen X et al (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117

    Article  CAS  PubMed  Google Scholar 

  53. Wozney JM, Rosen V, Celeste AJ et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  CAS  PubMed  Google Scholar 

  54. Yu XY, Geng YJ, Li XH et al (2009) The effects of mesenchymal stem cells on c-kit up-regulation and cell-cycle re-entry of neonatal cardiomyocytes are mediated by activation of insulin-like growth factor 1 receptor. Mol Cell Biochem 332:25–32

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor folgende Beziehungen an: Das University of Connecticut/New England Musculoskeletal Institute erhält direkte finanzielle und materielle Forschungsunterstützung von Arthrex Inc. (Naples, USA). Dr. Mazzocca erhält direkte Forschungsunterstützung und ist ein Berater für Arthrex Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Beitzel M.A..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beitzel, K., Mazzocca, A., Siekmann, W. et al. Grundlagen biologischer Augmentationstechniken. Arthroskopie 26, 91–98 (2013). https://doi.org/10.1007/s00142-012-0734-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-012-0734-8

Schlüsselwörter

Keywords

Navigation