Skip to main content

Advertisement

Log in

Unsupervised learning of probabilistic subspaces for multi-spectral and multi-temporal image-based disaster mapping

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Accurate and timely identification of regions damaged by a natural disaster is critical for assessing the damages and reducing the human life cost. The increasing availability of satellite imagery and other remote sensing data has triggered research activities on development of algorithms for detection and monitoring of natural events. Here, we introduce an unsupervised subspace learning-based methodology that uses multi-temporal and multi-spectral satellite images to identify regions damaged by natural disasters. It first performs region delineation, matching, and fusion. Next, it applies subspace learning in the joint regional space to produce a change map. It identifies the damaged regions by estimating probabilistic subspace distances and rejecting the non-disaster changes. We evaluated the performance of our method on seven disaster datasets including four wildfire events, two flooding events, and a earthquake/tsunami event. We validated our results by calculating the dice similarity coefficient (DSC), and accuracy of classification between our disaster maps and ground-truth data. Our method produced average DSC values of 0.833 and 0.736, for wildfires and floods, respectively, and overall DSC of 0.855 for the tsunami event. The evaluation results support the applicability of our method to multiple types of natural disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data and materials used for this research are available upon request.

Code availability

Codes are available upon request.

References

  1. Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K., Mehl, H.: Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sens. 45, 1520–1528 (2007). https://doi.org/10.1109/TGRS.2007.895830

    Article  Google Scholar 

  2. Mori, N., Takahashi, T., Yasuda, T., Yanagisawa, H.: Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett. 38(7) (2011)

  3. Joyce, K.E., Belliss, S.E., Samsonov, S.V., McNeill, S.J., Glassey, P.J.: A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 33(2), 183–207 (2009)

    Article  Google Scholar 

  4. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

  5. Chen, J., Yuan, Z., Peng, J., Chen, L., Huang, H., Zhu, J., Liu, Y., Li, H.: Dasnet: dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 1194–1206 (2020)

    Article  Google Scholar 

  6. Zhang, H., Lin, M., Yang, G., Zhang, L.: ESCNet: an end-to-end superpixel-enhanced change detection network for very-high resolution remote sensing images. IEEE Trans. Neural Netw. Learn. Syst. 34(1), 28–42 (2023). https://doi.org/10.1109/TNNLS.2021.3089332

  7. Ma, Y., Chen, F., Liu, J., He, Y., Duan, J., Li, X.: An automatic procedure for early disaster change mapping based on optical remote sensing. Remote Sens. 8(4), 272 (2016)

    Article  Google Scholar 

  8. Sublime, J., Kalinicheva, E.: Automatic post-disaster damage mapping using deep-learning techniques for change detection: case study of the tohoku tsunami. Remote Sens. 11(9), 1123 (2019)

    Article  Google Scholar 

  9. Li, H., Celik, T., Longbotham, N., Emery, W.J.: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci. Remote Sens. Lett. 12(12), 2458–2462 (2015). https://doi.org/10.1109/LGRS.2015.2484220

    Article  Google Scholar 

  10. Navarro, G., Caballero, I., Silva, G., Parra, P.-C., Vázquez, Á., Caldeira, R.: Evaluation of forest fire on madeira island using sentinel-2a msi imagery. Int. J. Appl. Earth Obs. Geoinform. 58, 97–106 (2017)

    Google Scholar 

  11. Soltani, K., Ebtehaj, I., Amiri, A., Azari, A., Gharabaghi, B., Bonakdari, H.: Mapping the spatial and temporal variability of flood susceptibility using remotely sensed normalized difference vegetation index and the forecasted changes in the future. Sci. Total Environ. 770, 145288 (2021)

    Article  Google Scholar 

  12. Wang, Z., Liu, J., Li, J., Zhang, D.D.: Multi-spectral water index (muwi): a native 10-m multi-spectral water index for accurate water mapping on sentinel-2. Remote Sens. 10(10), 1643 (2018)

    Article  Google Scholar 

  13. Cocke, A.E., Fulé, P.Z., Crouse, J.E.: Comparison of burn severity assessments using differenced normalized burn ratio and ground data. Int. J. Wildland Fire 14(2), 189–198 (2005)

    Article  Google Scholar 

  14. Quintano, C., Fernández-Manso, A., Fernández-Manso, O.: Combination of landsat and sentinel-2 msi data for initial assessing of burn severity. Int. J. Appl. Earth Obs. Geoinform. 64, 221–225 (2018)

    Google Scholar 

  15. Torres, R., Mouginis-Mark, P., Self, S., Garbeil, H., Kallianpur, K., Quiambao, R.: Monitoring the evolution of the pasig-potrero alluvial fan, pinatubo volcano, using a decade of remote sensing data. J. Volcanol. Geoth. Res. 138(3–4), 371–392 (2004)

    Article  Google Scholar 

  16. Khandelwal, P., Singh, K.K., Singh, B., Mehrotra, A.: Unsupervised change detection of multispectral images using wavelet fusion and kohonen clustering network. Int. J. Eng. Technol. 5(2), 1401–1406 (2013)

    Google Scholar 

  17. Celik, T.: Unsupervised change detection in satellite images using principal component analysis and \(k\)-means clustering. IEEE Geosci. Remote Sens. Lett. 6, 772–776 (2009). https://doi.org/10.1109/LGRS.2009.2025059

    Article  Google Scholar 

  18. Celik, T., Curtis, C.V.: Resolution selective change detection in satellite images. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 970–973. IEEE (2010). https://doi.org/10.1109/ICASSP.2010.5495301

  19. Li, S., Fang, L., Yin, H.: Multitemporal image change detection using a detail-enhancing approach with nonsubsampled contourlet transform. IEEE Geosci. Remote Sens. Lett. 9, 836–840 (2012). https://doi.org/10.1109/LGRS.2011.2182632

    Article  Google Scholar 

  20. Yetgin, Z.: Unsupervised change detection of satellite images using local gradual descent. IEEE Trans. Geosci. Remote Sens. 50, 1919–1929 (2012). https://doi.org/10.1109/TGRS.2011.2168230

    Article  Google Scholar 

  21. Gupta, N., Ari, S., Panigrahi, N.: Change detection in landsat images using unsupervised learning and RBF-based clustering. IEEE Trans. Emerg. Topics Comput. Intell. (2019). https://doi.org/10.1109/TETCI.2019.2932087

    Article  Google Scholar 

  22. Gong, M., Su, L., Jia, M., Chen, W.: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 22, 98–109 (2014). https://doi.org/10.1109/TFUZZ.2013.2249072

    Article  Google Scholar 

  23. Wang, S., Liu, X., Zhu, X., Zhang, P., Zhang, Y., Gao, F., Zhu, E.: Fast parameter-free multi-view subspace clustering with consensus anchor guidance. IEEE Trans. Image Process. 31, 556–568 (2021)

    Article  Google Scholar 

  24. Xu, Y., Xiang, S., Huo, C., Pan, C.: Change detection based on auto-encoder model for VHR images. In: MIPPR 2013: Pattern Recognition and Computer Vision, vol. 8919, p. 891902 (2013). https://doi.org/10.1117/12.2031104. International Society for Optics and Photonics

  25. Bai, Y., Mas, E., Koshimura, S.: Towards operational satellite-based damage-mapping using u-net convolutional network: a case study of 2011 tohoku earthquake-tsunami. Remote Sens. 10(10), 1626 (2018). https://doi.org/10.3390/rs10101626

    Article  Google Scholar 

  26. Lei, T., Zhang, Q., Xue, D., Chen, T., Meng, H., Nandi, A.K.: End-to-end change detection using a symmetric fully convolutional network for landslide mapping. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3027–3031. IEEE (2019). https://doi.org/10.1109/icassp.2019.8682802

  27. Moghaddam, B.: Principal manifolds and probabilistic subspaces for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 780–788 (2002)

    Article  Google Scholar 

  28. Rifai, S., Dauphin, Y.N., Vincent, P., Bengio, Y., Muller, X.: The manifold tangent classifier. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24. Curran Associates, Inc. (2011). https://proceedings.neurips.cc/paper_files/paper/2011/file/d1f44e2f09dc172978a4d3151d11d63e-Paper.pdf

  29. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1445–1451 (2020)

    Article  Google Scholar 

  30. Yan, C., Meng, L., Li, L., Zhang, J., Wang, Z., Yin, J., Zhang, J., Sun, Y., Zheng, B.: Age-invariant face recognition by multi-feature fusionand decomposition with self-attention. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 18(1s), 1–18 (2022)

    Article  Google Scholar 

  31. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  32. Makrogiannis, S., Vanhamel, I., Fotopoulos, S., Sahli, H., Cornelis, J.P.: Watershed-based multiscale segmentation method for color images using automated scale selection. J. Electron. Imaging 14(3), 033007 (2005)

    Article  Google Scholar 

  33. Okorie, A., Makrogiannis, S.: Region-based image registration for remote sensing imagery. Comput. Vis. Image Underst. 189, 102825 (2019)

    Article  Google Scholar 

  34. Okorie, A.M., Makrogiannis, S.: Subspace analysis for multi-temporal disaster mapping using satellite imagery. In: Bebis, G., Li, B., Yao, A., Liu, Y., Duan, Y., Lau, M., Khadka, R., Crisan, A., Chang, R. (eds.) Advances in Visual Computing, pp. 162–173. Springer, Cham (2022)

    Chapter  Google Scholar 

  35. Simard, P.Y., LeCun, Y.A., Denker, J.S., Victorri, B.: In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Transformation Invariance in Pattern Recognition—Tangent Distance and Tangent Propagation, pp. 235–269. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_17

  36. Fitzgibbon, A.W., Zisserman, A.: Joint manifold distance: a new approach to appearance based clustering. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 1. IEEE (2003)

  37. Chang, J.-M., Kirby, M.: Face recognition under varying viewing conditions with subspace distance. In: Proc. Int’l Conf. on Artificial Intelligence and Pattern Recognition (AIPR-09), Orlando, FL, pp. 16–23 (2009)

  38. Broomhead, D., Jones, R., King, G.P.: Topological dimension and local coordinates from time series data. J. Phys. A Math. Gen. 20(9), 563 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu, Z., Woodcock, C.E.: Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens. Environ. 118, 83–94 (2012)

    Article  Google Scholar 

  40. Zhu, Z., Wang, S., Woodcock, C.E.: Improvement and expansion of the fmask algorithm: cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015)

    Article  Google Scholar 

Download references

Funding

The research leading to these results received funding from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) (award #SC3GM113754) and by the Army Research Office under Grant #W911NF2010095.

Author information

Authors and Affiliations

Authors

Contributions

SM contributed to conceptualization, funding acquisition, and supervision; SM and AO were involved in methodology; and AO, SM, and CK contributed to formal analysis and investigation, writing—original draft preparation, writing—review and editing, and resources.

Corresponding author

Correspondence to Sokratis Makrogiannnis.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okorie, A., Kambhamettu, C. & Makrogiannnis, S. Unsupervised learning of probabilistic subspaces for multi-spectral and multi-temporal image-based disaster mapping. Machine Vision and Applications 34, 103 (2023). https://doi.org/10.1007/s00138-023-01451-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-023-01451-w

Keywords

Navigation