Skip to main content
Log in

The development of ViBe foreground detection algorithm using Lévy flights random update strategy and Kinect laser imaging sensor

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper describes the development of a Lévy flights-based ViBe algorithm for foreground detection. It is based on a novel approach, using a particular class of the generalized random walk known as Lévy flights, to improve the spatial update mechanism. This mechanism originally used the uniform probability distribution, and it is responsible for handling the new objects that appear in the scene. The proposed approach speeds up the inclusion process of ghost regions in the background model and makes it faster than the inclusion of real static foreground objects while maintaining the classification performance. The developed detection algorithm was evaluated using inclusion speed and classification tests, the results showing the efficacy of using Lévy flights with ViBe’s updating mechanism. Experimental tests were also undertaken on the proposed algorithm to validate its ability with real images, obtained through a series of experiments performed using a multi-spectral Kinect laser imaging sensor, and also from a public dataset. The experimental results show the high adaptation capability of this algorithm against the background modification and validate its ability to deal with multi-spectral real images. The developed algorithm achieved a better performance in comparison with traditional ViBe algorithms when extracting background and detecting foreground objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adachi, H., Adachi, E.: Using kinect to measure joint movement for standing up and sitting down. In: 2015 9th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 68–72 (2015). https://doi.org/10.1109/ISMICT.2015.7107500

  2. Ahmed, M., Al-Jawad, N., T. Sabir, A.: Gait recognition based on Kinect Sensor (2014). https://doi.org/10.1117/12.2052588

  3. Al-Temeemy, A.A.: Human region segmentation and description methods for domiciliary healthcare monitoring using chromatic methodology. J. Electron. Imaging 27(27), 27–14 (2018). https://doi.org/10.1117/1.JEI.27.2.023005

    Article  Google Scholar 

  4. Al-Temeemy, A.A.: Multispectral imaging: monitoring vulnerable people. Optik 180, 469–483 (2019). https://doi.org/10.1016/j.ijleo.2018.11.042

    Article  Google Scholar 

  5. Al-Temeemy, A.A., Al-Saqal, S.A.: Laser-based structured light technique for 3d reconstruction using extreme laser stripes extraction method with global information extraction. Opt. Laser Technol. 138, 106897 (2021)

    Article  Google Scholar 

  6. Al-Temeemy, A.A., Spencer, J.W., Ralph, J.F.: Levy flights for improved ladar scanning. In: 2010 IEEE International Conference on Imaging Systems and Techniques, pp. 225–228 (2010). https://doi.org/10.1109/IST.2010.5548519

  7. Alnowami, M., Alnwaimi, Tahavori, F., Copland, M., Wells, K.: A quantitative assessment of using the kinect for xbox 360 for respiratory surface motion tracking (2012). https://doi.org/10.1117/12.911463

  8. Barnich, O., Droogenbroeck, M.V.: Vibe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011). https://doi.org/10.1109/TIP.2010.2101613

    Article  MathSciNet  MATH  Google Scholar 

  9. Barnich, O., Van Droogenbroeck, M.: Vibe: A powerful random technique to estimate the background in video sequences. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 945–948 (2009). https://doi.org/10.1109/ICASSP.2009.4959741

  10. Baronchelli, A., Radicchi, F.: Lévy flights in human behavior and cognition. Chaos Solitons Fractals 56, 101–105 (2013). https://doi.org/10.1016/j.chaos.2013.07.013. (Collective Behavior and Evolutionary Games)

    Article  Google Scholar 

  11. Boccignone, G., Ferraro, M.: Modelling gaze shift as a constrained random walk. Physica A 331(1), 207–218 (2004). https://doi.org/10.1016/j.physa.2003.09.011

    Article  Google Scholar 

  12. Chakravarti, N.: Beyond Brownian motion: a levy flight in magic boots. Resonance 9(1), 50–60 (2004). https://doi.org/10.1007/BF02902528

    Article  Google Scholar 

  13. Chambers, J.M., Mallows, C.L., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71(354), 340–344 (1976)

    Article  MathSciNet  Google Scholar 

  14. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) Computer Vision - ECCV 2000, pp. 751–767. Springer, Berlin (2000)

    Chapter  Google Scholar 

  15. Elhabian, S.Y., Ahmed, S.H., El-Sayed, K.M.: Moving object detection in spatial domain using background removal techniques - state-of-art. Recent Patents Comput. Sci. 1(1), 32–54 (2008)

    Article  Google Scholar 

  16. Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2012)

  17. Hong, S., Saavedra, G., Martinez-Corral, M.: Full parallax three-dimensional display from kinect v1 and v2. Op. Eng. (2016). https://doi.org/10.1117/1.OE.56.4.041305

    Article  Google Scholar 

  18. Hu, M., Li, H., Li, H., Li, K.: White light interference fringe detection based on improved ViBE algorithm. In: Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, vol. 11455, pp. 840 – 846. International Society for Optics and Photonics, SPIE (2020)

  19. Jahanshahi, M.R., Jazizadeh, F., Masri, S.F., Becerik-Gerber, B.: A novel system for road surface monitoring using an inexpensive infrared laser sensor (2012). https://doi.org/10.1117/12.915427

  20. Jian, W., Wu, K., Yu, Z., Chen, L.: Smoke regions extraction based on two steps segmentation and motion detection in early fire. In: MIPPR 2017: Pattern Recognition and Computer Vision, vol. 10609, pp. 281 – 288. International Society for Optics and Photonics, SPIE (2018)

  21. Jodoin, P., Mignotte, M., Konrad, J.: Statistical background subtraction using spatial cues. IEEE Trans. Circuits Syst. Video Technol. 17(12), 1758–1763 (2007). https://doi.org/10.1109/TCSVT.2007.906935

    Article  Google Scholar 

  22. Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: In Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems, AVBS01, VIDEO BASED SURVEILLANCE SYSTEMS (2001)

  23. Kanter, M.: Stable densities under change of scale and total variation inequalities. Ann. Probab. 3(4), 697–707 (1975)

    Article  MathSciNet  Google Scholar 

  24. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005). https://doi.org/10.1016/j.rti.2004.12.004. Special Issue on Video Object Processing

  25. Kramer, J., Burrus, N., Echtler, F., Daniel, H.C., Parker, M.: Hacking the Kinect. Apress, New York (2012)

    Book  Google Scholar 

  26. Landau, M.J., Choo, B.Y., Beling, P.A.: Simulating kinect infrared and depth images. IEEE Trans. Cybern. 46(12), 3018–3031 (2016). https://doi.org/10.1109/TCYB.2015.2494877

    Article  Google Scholar 

  27. Leportier, T., Park, M.C., Yano, S., Son, J.Y.: Generation of binary holograms with a kinect sensor for a high speed color holographic display (2017). https://doi.org/10.1117/12.2264080

  28. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Foreground object detection from videos containing complex background. In: Proceedings of the Eleventh ACM International Conference on Multimedia, MULTIMEDIA ’03, pp. 2–10. ACM, New York, NY, USA (2003). 10.1145/957013.957017. http://doi.acm.org/10.1145/957013.957017

  29. Liu, K., Zhang, J.: Moving object detection based on improved ViBe algorithm. In: Real-Time Image Processing and Deep Learning 2021, vol. 11736, pp. 154 – 160. International Society for Optics and Photonics, SPIE (2021)

  30. Lu, H., Yang, B., Zhao, R., Qu, P., Zhang, W.: Intelligent human fall detection for home surveillance. pp. 672–676 (2015). https://doi.org/10.1109/UIC-ATC-ScalCom.2014.56

  31. Pierre, B., Jacopo, B., Diederik, S.: A lévy flight for light. Nature 453, 495–498 (2008)

    Article  Google Scholar 

  32. Pisharady, P.K., Saerbeck, M.: Kinect based body posture detection and recognition system (2013). https://doi.org/10.1117/12.2009926

  33. Samir, M., Golkar, E., Rahni, A.A.A.: Comparison between the kinect v1 and kinect v2 for respiratory motion tracking. In: 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 150–155 (2015). https://doi.org/10.1109/ICSIPA.2015.7412180

  34. Sarbolandi, H., Lefloch, D., Kolb, A.: Kinect range sensing: structured-light versus time-of-flight kinect. Comput. Vis. Image Underst. 139, 1–20 (2015). https://doi.org/10.1016/j.cviu.2015.05.006

    Article  Google Scholar 

  35. Shahbaz, A., Hariyono, J., Jo, K.H.: Evaluation of background subtraction algorithms for video surveillance. In: 2015 Frontiers of Computer Vision, FCV 2015 (2015)

  36. Sharma, K., Moon, I., Kim, S.G.: Depth estimation of features in video frames with improved feature matching technique using kinect sensor. Opt. Eng. (2012). https://doi.org/10.1117/1.OE.51.10.107002

    Article  Google Scholar 

  37. Tahavori, F., Adams, E., Dabbs, M., Aldridge, Liversidge, N., Donovan, E., Jordan, T., Evans, P., Wells, K.: Combining marker-less patient setup and respiratory motion monitoring using low cost 3d camera technology (2015). https://doi.org/10.1117/12.2082726

  38. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  Google Scholar 

  39. Wang, H., Suter, D.: A consensus-based method for tracking: modelling background scenario and foreground appearance. Pattern Recogn. 40(3), 1091–1105 (2007). https://doi.org/10.1016/j.patcog.2006.05.024

    Article  MATH  Google Scholar 

  40. Weron, R.: Correction to: “on the chambers-mallows-stuck method for simulating skewed stable random variables”. HSC Research Reports HSC/96/01, Hugo Steinhaus Center, Wroclaw University of Technology (1996)

  41. Weron, R.: Levy-stable distributions revisited: tail index> 2 does not exclude the levy-stable regime. Int. J. Modern Phys. 12(2), 209–223 (2001). https://doi.org/10.1142/S0129183101001614

    Article  MathSciNet  Google Scholar 

  42. Xia, X., Lu, X., Cao, Y., Xia, S., Fu, C.: Moving vehicle detection with shadow elimination based on improved ViBe algorithm. J. Phys. Conf. Ser. 1302, 022080 (2019)

    Article  Google Scholar 

  43. Xu, A., Zhang, J., Tian, J., Zhang, D., Liu, X.: The improvement of VIBE foreground detection algorithm . In: MIPPR 2017: Automatic Target Recognition and Navigation, vol. 10608, pp. 1–6. International Society for Optics and Photonics, SPIE (2018)

  44. Yang, X., Liu, T.: Moving object detection algorithm based on improved visual background extractor. J. Phys. Conf. Ser. 1732, 012078 (2021)

    Article  Google Scholar 

  45. Zanuttigh, P., Marin, G., Mutto, C.D., Dominio, F., Minto, L., Cortelazzo, G.M.: Time-of-Flight and Structured Light Depth Cameras. Springer International Publishing, New York (2016)

    Book  Google Scholar 

  46. Zeng, X., Huang, L.: Gas leak detection in infrared video with background modeling. In: MIPPR 2017: Remote Sensing Image Processing. Geographic Information Systems, and Other Applications, vol. 10611, pp. 261–268. International Society for Optics and Photonics, SPIE (2018)

  47. Zhang, C., Ge, W., Xue, B.: Moving object detection in videos from hand-held camera. pp. 273–278. International Society for Optics and Photonics, SPIE (2018)

  48. Zhao, R., Liu, L., Chen, X., Song, J., Jiang, S.: Foreign substances detection algorithm for liquid in transparent glass bottles based on the combination of guided filter and visual background extractor. J. Electron. Imaging 27(4), 1–13 (2018)

    Article  Google Scholar 

  49. Zhao, Z., Xiao, F., Kong, X., Li, J., Zang, J.: Moving ships target detection algorithms for GAOFEN-4 sequence images. In: AOPC 2020: Telescopes. Space Optics, and Instrumentation, vol. 11570, pp. 151–156. International Society for Optics and Photonics, SPIE (2020)

  50. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 2, pp. 28–31 Vol.2 (2004). https://doi.org/10.1109/ICPR.2004.1333992

Download references

Acknowledgements

I would like to express my sincere gratitude to the Iraqi Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Al-Temeemy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Temeemy, A.A. The development of ViBe foreground detection algorithm using Lévy flights random update strategy and Kinect laser imaging sensor. Machine Vision and Applications 33, 58 (2022). https://doi.org/10.1007/s00138-022-01316-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-022-01316-8

Keywords

Navigation