Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 69(1), 7–34 (2019)
Article
Google Scholar
Cheng, H.-D., Shan, J., Ju, W., Guo, Y., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 43(1), 299–317 (2010)
Article
Google Scholar
Xian, M., Zhang, Y., Cheng, H.-D., Xu, F., Zhang, B., Ding, J.: Automatic breast ultrasound image segmentation: a survey. Pattern Recogn. 79, 340–355 (2018)
Article
Google Scholar
Haque, I.R.I., Neubert, J.: Deep learning approaches to biomedical image segmentation. Inform. Med. Unlocked 18, 100297 (2020)
Article
Google Scholar
Punn, N.S., Agarwal, S.: Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(1), 1–15 (2020)
Article
Google Scholar
Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B. et al.: Attention u-net: learning where to look for the pancreas. arXiv:1804.03999
Dong, S., Zhao, J., Zhang, M., Shi, Z., Deng, J., Shi, Y., Tian, M., Zhuo, C.: Deu-net: Deformable u-net for 3d cardiac mri video segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention pp. 98–107. Springer (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)
Bhardwaj, R., Nambiar, A.R., Dutta, D.: A study of machine learning in healthcare. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC) 02 (2017), pp. 236–241
Shan, J., Cheng, H.-D., Wang, Y.: A novel automatic seed point selection algorithm for breast ultrasound images. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)
Joo, S., Yang, Y.S., Moon, W.K., Kim, H.C.: Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Trans. Med. Imaging 23(10), 1292–1300 (2004)
Article
Google Scholar
Huang, Y.-L., Chen, D.-R.: Automatic contouring for breast tumors in 2-d sonography. In: IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 3225–3228. IEEE (2005)
Shan, J., Cheng, H., Wang, Y.: Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med Biol 38(2), 262–275 (2012)
Article
Google Scholar
Torbati, N., Ayatollahi, A., Kermani, A.: An efficient neural network based method for medical image segmentation. Comput. Biol. Med. 44, 76–87 (2014)
Article
Google Scholar
Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., Huang, C.-S., Shen, D., Chen, C.-M.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans. Sci. Rep. 6(1), 1–13 (2016)
Article
Google Scholar
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: International Conference on Artificial Neural Networks, pp. 270–279. Springer (2018)
Huynh, B., Drukker, K., Giger, M.: Mo-de-207b-06: computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks. Med. Phys. 43(6(Part30)), 3705–3705 (2016)
Article
Google Scholar
Fujioka, T., Kubota, K., Mori, M., Kikuchi, Y., Katsuta, L., Kasahara, M., Oda, G., Ishiba, T., Nakagawa, T., Tateishi, U.: Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn. J. Radiol. 37(6), 466–472 (2019)
Article
Google Scholar
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Yap, M.H., Pons, G., Marti, J., Ganau, S., Sentis, M., Zwiggelaar, R., Davison, A.K., Marti, R.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017)
Article
Google Scholar
Huang, Q., Huang, Y., Luo, Y., Yuan, F., Li, X.: Segmentation of breast ultrasound image with semantic classification of superpixels. Med. Image Anal. 61, 101657 (2020)
Article
Google Scholar
Ilesanmi, A.E., Idowu, O.P., Makhanov, S.S.: Multiscale superpixel method for segmentation of breast ultrasound. Comput. Biol. Med. 125, 103879 (2020)
Article
Google Scholar
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. arXiv:1706.03762
Lee, H., Park, J., Hwang, J.Y.: Channel attention module with multiscale grid average pooling for breast cancer segmentation in an ultrasound image. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(7), 1344–1353 (2020)
Google Scholar
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Akhtar, N., Ragavendran, U.: Interpretation of intelligence in cnn-pooling processes: a methodological survey. Neural Comput. Appl. 32(3), 879–898 (2020)
Article
Google Scholar
Rippel, O., Snoek, J., Adams, R.P.: Spectral representations for convolutional neural networks. arXiv:1506.03767
Punn, N.S., Agarwal, S.: Multi-modality encoded fusion with 3d inception u-net and decoder model for brain tumor segmentation. In: Multimedia Tools and Applications, pp. 1–16 (2020)
Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. arXiv:1701.04128
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Article
Google Scholar
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 3–11 (2018)
Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Xian, M., Zhang, Y., Cheng, H.-D., Xu, F., Huang, K., Zhang, B., Ding, J., Ning, C., Wang, Y.: A benchmark for breast ultrasound image segmentation (BUSIS). Infinite Study
Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)
Article
Google Scholar
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747
Geifman, A.: The correct way to measure inference time of deep neural networks. https://deci.ai/resources/blog/measure-inference-time-deep-neural-networks/. Accessed October 23, 2021 (2020)