Skip to main content
Log in

Automated diagnosis of diverse coffee leaf images through a stage-wise aggregated triple deep convolutional neural network

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Due to the struggles of developing countries in coping with widespread coffee leaf diseases and infestations, the quality and quantity of coffee-based commodities have reduced significantly. This paper proposes a solution to this problem using Deep Convolutional Neural Networks (DCNN) that classifies seven coffee leaf conditions. Unlike other studies, this work proposed a novel Triple-DCNN (T-DCNN) composed of three aggregated DCNN models formed in an ensemble to produce lesser bias and better accuracy than standard models. Added to the proposed T-DCNN, an employed stage-wise approach narrowed down the classification options through a multi-staged structure and diversified the entire feature pool. Upon evaluation, the proposed Stage-Wise Aggregated T-DCNN (SWAT-DCNN) yielded successful diagnoses of diverse coffee leaf conditions in various environmental settings. Furthermore, with an overall accuracy of 95.98%, the SWAT-DCNN outperformed most state-of-the-art DCNNs that performed the same task.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data and code availability

The author believes that research reproducibility can better impact other researchers and the likes that may require such a solution. Therefore, the author provides the SWAT-DCNN code and data sources through this link https://github.com/francismontalbo/swatdcnn for future reproduction and improvements.

Abbreviations

AUC:

Area Under the Curve

BCE:

Binary Cross-Entropy

BrACoL:

Brazilian Arabica Coffee Leaves

BSL:

Brown Spot Lesions

CCE:

Categorical Cross-Entropy

CE:

Cross-Entropy

CLM:

Coffee Leaf Miner

CLR:

Coffee Leaf Rust

CLS:

Cercospora Leaf Spots

CNN:

Convolutional Neural Networks

DCNN:

Deep Convolutional Neural Networks

DL:

Deep Learning

FLOPS:

Floating-Point Operations Per Second

FN:

False Negatives

FP:

False Positives

GAP:

Global Average Pooling

Grad-CAM:

Gradient-Weighted Class Activation Map

LiCoLe:

Liberica Coffee Leaves

LR:

Learning Rate

PLS:

Phoma Leaf Spots

P-R:

Precision-Recall

ReLU:

Rectified Linear Unit

ROC:

Receiver Operating Characteristic

RoCoLe:

Robust Coffee Leaves

RSM:

Red Spider Mite

SGD:

Stochastic Gradient Descent

SM:

Sooty Molds

SWAT-DCNN:

Stage-Wise Aggregated Triple-Deep Convolutional Neural Network

T-DCNN:

Triple Deep Convolutional Neural Network

TN:

True Negatives

TP:

True Positives

References

  1. Mutandwa, E., Kanuma, N.T., Rusatira, E., Kwiringirimana, T., Mugenzi, P., Govere, I., Foti, R.: Analysis of coffee export marketing in Rwanda: application of the Boston consulting group matrix. Afr. J. Bus. Manage. 3(5), 210–219 (2009). https://doi.org/10.5897/AJBM09.009

    Article  Google Scholar 

  2. Badel, J.L., Zambolim, L.: Coffee bacterial diseases: a plethora of scientific opportunities. Plant. Pathol. 68(3), 411–425 (2019). https://doi.org/10.1111/ppa.12966

    Article  Google Scholar 

  3. Millard, E.: Still brewing: fostering sustainable coffee production. World Dev. Perspect. 7, 32–42 (2017). https://doi.org/10.1016/j.wdp.2017.11.004

    Article  Google Scholar 

  4. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, pp. 253–256 (2010). https://doi.org/10.1109/ISCAS.2010.5537907

  5. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems 2 (NIPS’89), pp. 396–404 (1990). https://papers.nips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf.

  6. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the Neural Information Processing Systems, pp. 1097–1105 (2012). https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

  7. Minetto, R., Pamplona Segundo, M., Sarkar, S.: Hydra: an ensemble of convolutional neural networks for geospatial land classification. IEEE Trans. Geosci. Remote Sens. 57(9), 6530–6541 (2019). https://doi.org/10.1109/TGRS.2019.2906883

    Article  Google Scholar 

  8. Esener, I., Ergin, S., Yuksel, T.: A new feature ensemble with a multistage classification scheme for breast cancer diagnosis. J. Healthc. Eng. 2017(3895164), 1–15 (2017). https://doi.org/10.1155/2017/3895164

    Article  Google Scholar 

  9. Amara, J., Bouaziz, B., Algergawy, A.: A deep learning-based approach for banana leaf diseases classification. BTW Workshops, pp. 79–88 (2017). https://dl.gi.de/handle/20.500.12116/944

  10. Zhang, K., Wu, Q., Liu, A., Meng, X.: Can deep learning identify tomato leaf disease? Adv. Multimedia 2018, 1–10 (2018). https://doi.org/10.1155/2018/6710865

    Article  Google Scholar 

  11. Zhang, X., Qiao, Y., Meng, F., Fan, C., Zhang, M.: Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access 6, 30370–30377 (2018). https://doi.org/10.1109/ACCESS.2018.2844405

    Article  Google Scholar 

  12. Esgario, J., Krohling, R., Ventura, J.: Deep learning for classification and severity estimation of coffee leaf biotic stress. Comput. Electron. Agric. 169, 105162 (2020). https://doi.org/10.1016/j.compag.2019.105162

    Article  Google Scholar 

  13. Kumar, M., Gupta, P., Madhav, P., Sachin: Disease Detection in coffee plants using convolutional neural network. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), COIMBATORE, India, pp. 755–760 (2020). https://doi.org/10.1109/ICCES48766.2020.9138000

  14. Montalbo, F.J.P., Hernandez, A.A.: Classifying Barako coffee leaf diseases using deep convolutional models. Int. J. Adv. Intell. Inform. 6(2), 197 (2020). https://doi.org/10.26555/ijain.v6i2.495

    Article  Google Scholar 

  15. Zambolim, L.: ‘Current status and management of coffee leaf rust in Brazil.’ Tropic. Plant Pathol. 41(1), 1–8 (2016). https://doi.org/10.1007/s40858-016-0065-9

    Article  Google Scholar 

  16. Talhinhas, P., et al.: The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Mol. Plant Pathol. 18(8), 1039–1051 (2017). https://doi.org/10.1111/mpp.12512

    Article  Google Scholar 

  17. Nelson, S.: Cercospora Leaf Spot and Berry Blotch of Coffee. University of Hawaiʻi at Manoa, College of Tropical Agriculture and Human Resources, Cooperative Extension Service, Honolulu (2008). http://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-41.pdf

  18. Silva Júnior, M., et al.: Foliar fertilizers for the management of phoma leaf spot on coffee seedlings. J. Phytopathol. 166(10), 686–693 (2018). https://doi.org/10.1111/jph.12745

    Article  Google Scholar 

  19. Maghuly, F., Jankowicz-Cieslak, J., Bado, S.: Improving coffee species for pathogen resistance. CAB Rev. 15(9), 1–18 (2020). https://doi.org/10.1079/PAVSNNR202015009

    Article  Google Scholar 

  20. Silva, M., et al.: Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz. J. Plant. Physiol. 18(1), 119–147 (2006). https://doi.org/10.1590/s1677-04202006000100010

    Article  Google Scholar 

  21. Sanders, M.: Breeding for coffee leaf rust resilience in Coffea sp. Nat. Sci. Educ. 48(1), 190102 (2019). https://doi.org/10.4195/nse2019.01.0102

    Article  Google Scholar 

  22. Roy, S., Muraleedharan, N., Mukhopadhyay, A.: The red spider mite, Oligonychus coffeae (Acari: Tetranychidae): its status, biology, ecology and management in tea plantations. Exp. Appl. Acarol. 63(4), 431–463 (2014). https://doi.org/10.1007/s10493-014-9800-4

    Article  Google Scholar 

  23. Androcioli, H., Hoshino, A., Menezes Júnior, A., Morais, H., Bianco, R., Caramori, P.: Coffee leaf miner incidence and its predation bay wasp in coffee intercropped with rubber trees. Coffee Sci. 13(3), 389–400 (2018). https://doi.org/10.25186/cs.v13i3.1487

    Article  Google Scholar 

  24. Nelson, S.: Sooty Mold. University of Hawaii, Honolulu (2008). https://scholarspace.manoa.hawaii.edu/handle/10125/12424

  25. Savary, S., Ficke, A., Aubertot, J.-N., Hollier, C.: Crop losses due to disease and their implications for global food production losses and food security. Food Secur. 4(2), 519–537 (2012). https://doi.org/10.1007/s12571-012-0200-5

    Article  Google Scholar 

  26. Bentley, J., Thiele, G.: Bibliography: farmer knowledge and management of crop disease. Agric. Hum. Values 16, 75–81 (1999). https://doi.org/10.1023/a:1007558919244

    Article  Google Scholar 

  27. Nelson, R., et al.: Working with resource-poor farmers to manage plant diseases. Plant Dis. 85(7), 684–695 (2001). https://doi.org/10.1094/pdis.2001.85.7.684

    Article  Google Scholar 

  28. Ngugi, L., Abelwahab, M., Abo-Zahhad, M.: Recent advances in image processing techniques for automated leaf pest and disease recognition—a review. Inf. Process. Agric. (2020). https://doi.org/10.1016/j.inpa.2020.04.004

    Article  Google Scholar 

  29. Tarr, S.A.J.: Plant injury due to insects, mites, nematodes, and other pests. In: Tarr, S.A.J. (ed.) Principles of Plant Pathology, pp. 126–137. Springer, Berlin (1972). https://doi.org/10.1007/978-1-349-00355-6_9

    Chapter  Google Scholar 

  30. Parraga-Alava, J., Cusme, K., Loor, A., Santander, E.: RoCoLe: a robusta coffee leaf images dataset for evaluation of machine learning based methods in plant diseases recognition. Data Brief 25, 104414 (2019). https://doi.org/10.1016/j.dib.2019.104414

    Article  Google Scholar 

  31. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary Ph.D. Workshop (IIPhDW), Swinoujście, pp. 117–122 (2018). https://doi.org/10.1109/IIPHDW.2018.8388338

  32. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 27 (2019). https://doi.org/10.1186/s40537-019-0192-5

    Article  Google Scholar 

  33. Saravanan, N., Sathish, G., Balajee, J.M.: Data wrangling and data leakage in machine learning for healthcare. Int. J. Emerg. Technol. Innov. Res. 5(8), 553–557 (2018)

    Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint, arXiv:1409.1556

  35. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  36. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114 (2019). http://proceedings.mlr.press/v97/tan19a.html

  37. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  38. Chollet, F. : Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp. 1800–1807 (2017). https://doi.org/10.1109/CVPR.2017.195

  39. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision—ECCV 2016 ECCV 2016. Lecture Notes in Computer Science, vol. 9908, pp. 630–645. Springer, Amsterdam (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  40. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  41. Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M., Van Essen, B.C., Awwal, A.A.S., Asari, V.K.: A state-of-the-art survey on deep learning theory and architectures. Electron 8(3), 292 (2019). https://doi.org/10.3390/electronics8030292

    Article  Google Scholar 

  42. Chowdhury, N.K., Rahman, M., Rezoana, N., Kabir, M.A. : ECOVNet: an ensemble of deep convolutional neural networks based on EfficientNet to detect COVID-19 from chest X-rays. arXiv preprint, arXiv:2009.11850

  43. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990). https://doi.org/10.1109/34.58871

    Article  Google Scholar 

  44. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  45. Too, E.C., Yujian, L., Njuki, S., Yingchun, L.: A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161, 272–279 (2019). https://doi.org/10.1016/j.compag.2018.03.032

    Article  Google Scholar 

  46. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the International Conference on Learning Representations (2014). https://arxiv.org/abs/1312.4400

  47. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (2014). https://doi.org/10.5555/2627435.2670313

    Article  MathSciNet  MATH  Google Scholar 

  48. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G.B., Muller, K.R. (eds.) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700, 2nd edn., pp. 437–478. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-35289-8_26

    Chapter  Google Scholar 

  49. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018). https://doi.org/10.1137/16M1080173

    Article  MathSciNet  MATH  Google Scholar 

  50. Hinton, G., Srivastava, N., Swersky, K. : Neural Networks for Machine Learning—Lecture 6a: Overview of Mini-Batch Gradient Descent. University of Toronto, Toronto, ON (2012). https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

  51. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. The Springer Series on Challenges in Machine Learning, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1

    Chapter  Google Scholar 

  52. ML Cheatsheet: Loss functions (2019). https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html . Accessed 2020 Nov 24

  53. Mohammad, H., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manage. Process 5(2), 01–11 (2015). https://doi.org/10.5121/ijdkp.2015.5201

    Article  Google Scholar 

  54. Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 402–408 (2000). https://doi.org/10.5555/3008751.3008807

  55. Jia, F., Lei, Y., Lu, N., Xing, S.: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Mech. Syst. Signal Process. 110, 349–367 (2018). https://doi.org/10.1016/j.ymssp.2018.03.025

    Article  Google Scholar 

  56. Dhingra, G., Kumar, V., Joshi, H.D.: A novel computer vision based neutrosophic approach for leaf disease identification and classification. Measurement 135, 782–794 (2019). https://doi.org/10.1016/j.measurement.2018.12.027

    Article  Google Scholar 

  57. Fuentes, A.F., Yoon, S., Lee, J., Park, D.S.: High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank. Front. Plant Sci. 9, 1162 (2018). https://doi.org/10.3389/fpls.2018.01162

    Article  Google Scholar 

  58. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. : Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

  59. Buzzy, M., Thesma, V., Davoodi, M., Mohammadpour Velni, J.: Real-time plant leaf counting using deep object detection networks. Sensors 20(23), 6896 (2020). https://doi.org/10.3390/s20236896

    Article  Google Scholar 

  60. Singh, V., Misra, A.K.: ‘Detection of plant leaf diseases using image segmentation and soft computing techniques.’ Inf. Process. Agricult. 4, 41–49 (2017). https://doi.org/10.1016/j.inpa.2016.10.005

    Article  Google Scholar 

Download references

Acknowledgment

The author thanks Batangas State University for supporting this study and the validation of its results. Without its support, this work would not have become possible.

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed fully to accomplishing this study.

Corresponding author

Correspondence to Francis Jesmar P. Montalbo.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalbo, F.J.P. Automated diagnosis of diverse coffee leaf images through a stage-wise aggregated triple deep convolutional neural network. Machine Vision and Applications 33, 19 (2022). https://doi.org/10.1007/s00138-022-01277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-022-01277-y

Keywords

Navigation