Skip to main content

DeepROD: a deep learning approach for real-time and online detection of a panic behavior in human crowds


Detecting a panic behavior within a human crowd is of a high importance as it allows to prevent disasters. Online analysis of video streams, real-time processing and accurate detection are required to ensure effective surveillance of the crowded places. However, these requirements are not simultaneously fulfilled by the existing techniques. Rapid advances in artificial intelligence are investing the power for automatic public surveillance and timely detection of a possible abnormal behavior. Thus, the aim of the present work is to propose an online, real-time and effective technique for panic behavior detection. It relies on a handcrafted feature that accounts for the characteristics of the crowd to understand people behaviors and a long short-term memory neural network to predict future feature values. Experiments are performed on well-known datasets of panic situations to evaluate the performance and accuracy of the proposed algorithm. Results show the system yields excellent performances in terms of accuracy and processing time with respect to the state of the art techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Xu, M., Yu, X., Chen, D., Wu, C., Jiang, Y.: An efficient anomaly detection system for crowded scenes using variational autoencoders. Appl. Sci. 9(16), 33–37 (2019)

    Google Scholar 

  2. Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., Klette, R.: Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes. Comput. Vis. Image Underst. 172, 88–97 (2018)

    Article  Google Scholar 

  3. Roshtkhari, M.J., Levine, M.D.: An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions. Comput. Vis. Image Underst. 117(10), 1436–1452 (2013)

    Article  Google Scholar 

  4. Aldissi, B., Ammar, H.: Real-time frequency-based detection of a panic behavior in human crowds. Multimed. Tools Appl. 79(33), 24581–24871 (2020)

  5. Shehab, D., Ammar, H.: Statistical detection of a panic behavior in crowded scenes. Mach. Vis. Appl. 30(5), 919–931 (2019)

    Article  Google Scholar 

  6. George, M., Bijitha, C., Jose, B.R.: Crowd panic detection using autoencoder with non-uniform feature extraction. In: 8th International Symposium on Embedded Computing and System Design (ISED), pp. 11–15. IEEE (2018)

  7. Singh, G., Khosla, A., Kapoor, R.: Crowd escape event detection via pooling features of optical flow for intelligent video surveillance systems. Int. J. Image Graph. Signal Process. 10, 40–49 (2019)

    Google Scholar 

  8. Cheoi, K.J.: Temporal saliency-based suspicious behavior pattern detection. Appl. Sci. 10(3), 1020 (2020)

    Article  Google Scholar 

  9. Zhang, X., Shu, X., He, Z.: Crowd panic state detection using entropy of the distribution of enthalpy. Phys. A: Stat. Mech. Appl. 525, 935–945 (2019)

    Article  Google Scholar 

  10. Sikdar, A., Chowdhury, A.S.: An adaptive training-less system for anomaly detection in crowd scenes, arXiv preprint arXiv:1906.00705 (2019)

  11. Kumar, A.: Panic detection in human crowds using sparse coding, Master’s thesis, University of Waterloo (2012)

  12. Liu, Y., Li, X., Jia, L.: Abnormal crowd behavior detection based on optical flow and dynamic threshold. In: 11th World Congress on Intelligent Control and Automation (WCICA), pp. 2902–2906. IEEE (2014)

  13. Chen Chunyu, X.B., Yu, S.: Detection of anomalous crowd behavior based on the acceleration feature. IEEE Sens. J. 15(12), 7252–7261 (2015)

    Article  Google Scholar 

  14. Chen, C.-Y., Shao, Y.: Crowd escape behavior detection and localization based on divergent centers. IEEE Sens. J. 15(4), 2431–2439 (2015)

    Article  Google Scholar 

  15. Direkoglu, C., Sah, M., O’Connor, N.E.: Abnormal crowd behavior detection using novel optical flow-based features. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

  16. Wu, S., Wong, H.-S., Yu, Z.: A Bayesian model for crowd escape behavior detection. IEEE Trans. Circuits Syst. Video Technol. 24(1), 85–98 (2014)

    Article  Google Scholar 

  17. Mousavi, H., Mohammadi, S., Perina, A., Chellali, R., Murino, V.: Analyzing tracklets for the detection of abnormal crowd behavior. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 148–155. IEEE (2015)

  18. Fradi, H., Dugelay, J.-L.: Towards crowd density-aware video surveillance applications. Inf. Fusion 24, 3–15 (2015)

    Article  Google Scholar 

  19. Gunduz, A.E., Ongun, C., Temizel, T.T., Temizel, A.: Density aware anomaly detection in crowded scenes. IET Comput. Vis. 10(5), 374–381 (2016)

    Article  Google Scholar 

  20. Shi, Y., Gao, Y., Wang, R.: Real-time abnormal event detection in complicated scenes. In: 2010 20th International Conference on Pattern Recognition, pp. 3653–3656. IEEE (2010)

  21. Wang, L., Dong, M.: Real-time detection of abnormal crowd behavior using a matrix approximation-based approach. In: 2012 19th IEEE International Conference on Image Processing, pp. 2701–2704. IEEE (2012)

  22. Medel, J.R., Savakis, A.: Anomaly detection in video using predictive convolutional long short-term memory networks, Master’s thesis, Rochester Institute of Technology (2016)

  23. Singh, K., Rajora, S., Vishwakarma, D.K., Tripathi, G., Kumar, S., Walia, G.S.: Crowd anomaly detection using aggregation of ensembles of fine-tuned convnets. Neurocomputing 371, 188–198 (2020)

    Article  Google Scholar 

  24. de Almeida, I.R., Cassol, V.J., Badler, N.I., Musse, S.R., Jung, C.R.: Detection of global and local motion changes in human crowds. IEEE Trans. Circuits Syst. Video Technol. 27(3), 603–612 (2017)

    Article  Google Scholar 

  25. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model, in Computer Vision and Pattern Recognition, : CVPR 2009. IEEE Conf. 2009, 935–942 (2009)

    Google Scholar 

  26. Pennisi, A., Bloisi, D.D., Iocchi, L.: Online real-time crowd behavior detection in video sequences. Comput. Vis. Image Underst. 144, 166–176 (2016)

    Article  Google Scholar 

  27. Ravanbakhsh, M., Nabi, M., Sangineto, E., Marcenaro, L., Regazzoni, C., Sebe, N.: Abnormal event detection in videos using generative adversarial nets. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1577–1581. IEEE (2017)

  28. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection: a new baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)

  29. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)

    Article  Google Scholar 

  30. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  31. Box, G.E., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol) 26(2), 211–243 (1964)

    MATH  Google Scholar 

  32. Li, W., Mahadevan, V., Vasconcelos, N.: Anomaly detection and localization in crowded scenes. IEEE Trans. Pattern Anal. Mach. Intell 36(1), 18–32 (2014)

    Article  Google Scholar 

  33. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2720–2727 (2013)

  34. University of Minnesota. Unusual crowd activity dataset. [Online]. Available:

  35. Rabiee, H., Haddadnia, J., Mousavi, H., Kalantarzadeh, M., Nabi, M., Murino, V.: Novel dataset for fine-grained abnormal behavior understanding in crowd. In: 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 95–101. IEEE (2016)

  36. Ferryman, J., Shahrokni, A.: Pets 2009: dataset and challenge. In: Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–6. IEEE (2009)

  37. wazee2 digital. cloud digital asset management platform. [Online]. Available:

  38. wazee digital. cloud digital asset management platform (2). [Online]. Available:

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Heyfa Ammar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ammar, H., Cherif, A. DeepROD: a deep learning approach for real-time and online detection of a panic behavior in human crowds. Machine Vision and Applications 32, 57 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Machine learning
  • Panic behavior
  • Real-time and online detection
  • Online training