Skip to main content
Log in

A novel approach for ear recognition: learning Mahalanobis distance features from deep CNNs

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Recently, deep convolutional neural networks (CNNs) have been used for ear recognition with the increasing and available ear image databases. However, most known ear recognition methods may be affected by selecting and weighting features; this is always a challenging issue in ear recognition and other pattern recognition applications. Metric learning can address this issue by using an accurate and efficient metric distance called Mahalanobis distance. Therefore, this paper presents a novel approach for ear recognition problems based on a learning Mahalanobis distance metric on deep CNN features. In detail, firstly, various deep features are extracted by adopting VGG and ResNet pre-trained models. Secondly, the discriminant correlation analysis is exploited to eliminate the dimensionality problem. Thirdly, the Mahalanobis distance is learned based on LogDet divergence metric learning. Finally, K-nearest neighbor is used for ear recognition. The experiments are performed on four public ear databases: AWE, USTB II, AMI, and WPUT, and experimental results prove that the proposed approach outperforms the existing state-of-the-art ear recognition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iannarelli, A. V.: Ear identification. Paramont Publishing Company (1964)

  2. Hoogstrate, A., Van den Heuvel, H., Huyben, E.: Ear identification based on surveillance camera images. Sci. Just. 41(3), 167–172 (2001)

    Article  Google Scholar 

  3. Kieckhoefer, H., Ingleby, M., Lucas, G.: Monitoring the physical formation of earprints: optical and pressure mapping evidence. Measurement 39(10), 918–935 (2006)

    Article  Google Scholar 

  4. Omara, I., Li, F., Zhang, H., Zuo, W.: A novel geometric feature extraction method for ear recognition. Expert Syst. Appl. 65, 127–135 (2016)

    Article  Google Scholar 

  5. Mu, Z., Yuan, L., Xu, Z., Xi, D., Qi, S.: Shape and structural feature based ear recognition, pp. 663–670. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  6. Shailaja, D., Gupta, P.: A simple geometric approach for ear recognition. In: 9th International Conference on Information Technology, ICIT’06, pp. 164–167. IEEE (2006)

  7. Zhang, H.J., Mu, Z.C., Qu, W., Liu, L.M., Zhang, C.-Y.: A novel approach for ear recognition based on ica and rbf network. In: International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4511–4515. IEEE

  8. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1160–1165 (2003)

    Article  Google Scholar 

  9. Boodoo-Jahangeer, N., Baichoo, S.: Lbp-based ear recognition. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4. IEEE

  10. Damer, N., Führer, B.: Ear recognition using multi-scale histogram of oriented gradients. In: Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 21–24. IEEE

  11. Youbi, Z., Boubchir, L., Boukrouche, A.: Human ear recognition based on local multi-scale LBP features with city-block distance. Multimed. Tools Appl. 78(11), 14425–14441 (2019)

    Article  Google Scholar 

  12. Yuan, L., ChunMu, Z.: Ear recognition based on local information fusion. Pattern Recogn. Lett. 33(2), 182–190 (2012)

    Article  Google Scholar 

  13. Ghazi, M.M., Ekenel, H.K.: A comprehensive analysis of deep learning-based representation for face recognition. arXiv:1606.02894 (2016)

  14. Kumar, S., Pandey, A., Satwik, K.S.R., Kumar, S., Singh, S.K., Singh, A.K., Mohan, A.: Deep learning framework for recognition of cattle using muzzle point image pattern. Measurement 116, 1–17 (2018)

    Article  Google Scholar 

  15. Cbuk, M., Budak, U., Guo, Y., Ince, M.C., Sengur, A.: Efficient deep features selections and classification for flower species recognition. Measurement 137, 7–13 (2019)

    Article  Google Scholar 

  16. Omara, I., Xiao, G., Amrani, M., Yan, Z., Zuo, W.: Deep features for efficient multi-biometric recognition with face and ear images. In: Ninth International Conference on Digital Image Processing (ICDIP 2017), vol. 10420, p. 104200D. International Society for Optics and Photonics (2017)

  17. Hu, F., Xia, G.S., Hu, J., Zhang, L.: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7(11), 14680–14707 (2015)

    Article  Google Scholar 

  18. Omara, I., Wu, X., Zhang, H., Du, Y., Zuo, W.: Learning pairwise svm on deep features for ear recognition. In: IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), pp. 341–346. IEEE (2017)

  19. Omara, I., Wu, X., Zhang, H., Du, Y., Zuo, W.: Learning pairwise svm on hierarchical deep features for ear recognition. IET Biomet. 7(6), 557–566 (2018)

    Article  Google Scholar 

  20. Emeršič, Ž., Štepec, D., Štruc, V., Peer, P.: Training convolutional neural networks with limited training data for ear recognition in the wild (2017). arXiv:1711.09952

  21. Mounsef, S.D.J., Karam, L.: Unconstrained ear recognition using deep neural networks. IET Biomet. 7(3), 207–214 (2018)

    Article  Google Scholar 

  22. Liong, V.E., Lu, J., Ge, Y.: Regularized local metric learning for person re-identification. Pattern Recogn. Lett. 68, 288–296 (2015)

    Article  Google Scholar 

  23. Soleimani, A., Araabi, B.N., Fouladi, K.: Deep multitask metric learning for offline signature verification. Pattern Recogn. Lett. 80, 84–90 (2016)

    Article  Google Scholar 

  24. Lu, J., Hu, J., Tan, Y.P.: Discriminative deep metric learning for face and kinship verification. IEEE Trans. Image Process. 26(9), 4269–4282 (2017)

    Article  MathSciNet  Google Scholar 

  25. Méndez-Vázquez, H.: Metric learning in the dissimilarity space to improve low-resolution face recognition. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 21st Iberoamerican Congress, CIARP 2016, Lima, Peru, November 8–11, 2016, Proceedings, vol. 10125, p. 217. Springer (2017)

  26. Xiang, S., Nie, F., Zhang, C.: Learning a mahalanobis distance metric for data clustering and classification. Pattern Recogn. 41(12), 3600–3612 (2008)

    Article  Google Scholar 

  27. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 209–216. ACM (2007)

  28. Guillaumin, M., Verbeek, J., Schmid, C.: “Is that you? Metric learning approaches for face identification. In: IEEE 12th International Conference on Computer Vision, pp. 498–505. IEEE (2009)

  29. Ying, Y., Li, P.: Distance metric learning with eigenvalue optimization. J. Mach. Learn. Res. 13, 1–26 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Ying, Y., Huang, K., Campbell, C.: Sparse metric learning via smooth optimization. In: Advances in Neural Information Processing Systems, pp. 2214–2222 (2009)

  31. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  32. Shen, C., Kim, J., Wang, L., Hengel, A.V.D.: Positive semidefinite metric learning using boosting-like algorithms. J. Mach. Learn. Res. 13, 1007–1036 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Shen, C., Kim, J., Wang, L.: A scalable dual approach to semidefinite metric learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2601–2608. IEEE (2011)

  34. Mei, J., Liu, M., Karimi, H.R., Gao, H.: Logdet divergence based metric learning using triplet labels. In: Proceedings of the Workshop on Divergences and Divergence Learning (ICML’13) (2013)

  35. Rahman, M., Sadi, M.S., Islam, M.R.: Human ear recognition using geometric features. In: International Conference on Electrical Information and Communication Technology (EICT), pp. 1–4. IEEE (2014)

  36. Emeršič, Ž., Štruc, V., Peer, P.: Ear recognition: More than a survey. Neurocomputing 13(255), 26–39 (2017)

    Article  Google Scholar 

  37. Nosrati K.F., Masoud, S., Faradji, F.: Using 2d wavelet and principal component analysis for personal identification based on 2d ear structure. International Conference on Intelligent and Advanced Systems. ICIAS 2007. IEEE (2007)

  38. Nanni, L., Lumini, A.: Fusion of color spaces for ear authentication. Pattern Recogn. 42(9), 1906–1913 (2009)

    Article  Google Scholar 

  39. Kumar, A., Wu, C.: Automated human identification using ear imaging. Pattern Recogn. 45(3), 956–968 (2012)

    Article  Google Scholar 

  40. Nanni, L., Lumini, A.: A multi-matcher for ear authentication. Pattern Recogn. Lett. 28(16), 2219–2226 (2007)

    Article  Google Scholar 

  41. Wang, Y., Mu, Z.C., Zeng, H.: Block-based and multi-resolution methods for ear recognition using wavelet transform and uniform local binary patterns. In: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, pp. 1–4. IEEE (2008)

  42. Zhou, J., Cadavid, S., Abdel-Mottaleb, M.: Exploiting color sift features for 2d ear recognition. In: 2011 18th IEEE International Conference on Image Processing, pp. 553–556. IEEE (2011)

  43. Guo, Y., Xu, Z.: Ear recognition using a new local matching approach. In: 15th IEEE International Conference on Image Processing. IEEE (2008)

  44. Benzaoui, A., Hadid, A., Boukrouche, A.: Ear biometric recognition using local texture descriptors. J. Electron. Imaging 23(5), 053008 (2014)

    Article  Google Scholar 

  45. Pflug, A., Paul, P.N., Busch, C.: A comparative study on texture and surface descriptors for ear biometrics. In: International Carnahan Conference on Security Technology (2014)

  46. Jacob, L., Raju, G.: Ear recognition using texture features-a novel approach. In: Advances in Signal Processing and Intelligent Recognition Systems, pp. 1–12. Springer, Cham (2014)

    Google Scholar 

  47. Galdámez, P.L., Raveane, W., Arrieta, A.G.: A brief review of the ear recognition process using deep neural networks. J. Appl. Logic 24, 62–70 (2017)

    Article  MathSciNet  Google Scholar 

  48. Omara, I., Emam, M., Hammad, M., Zuo, W.: Ear verification based on a novel local feature extraction. In: Proceedings of the 2017 International Conference on Biometrics Engineering and Application, pp. 28–32. ACM (2017)

  49. Li, J., Wu, Y., Zhao, J., Lu, K.: Multi-manifold sparse graph embedding for multi-modal image classification. Neurocomputing 173, 501–510 (2016)

    Article  Google Scholar 

  50. Omara, I., Li, X., Xiao, G., Adil, K., Zuo, W.: Discriminative local feature fusion for ear recognition problem. In: Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics, pp. 139–145. ACM (2018)

  51. Li, J., Lu, K., Huang, Z., Zhu, L., Shen, H.T.: Heterogeneous domain adaptation through progressive alignment. IEEE Trans Neural Netw Learn Syst 30(5), 1381–1391 (2018)

    Article  MathSciNet  Google Scholar 

  52. Güner, A., Alçin, Ö.F., Şengür, A.: Automatic digital modulation classification using extreme learning machine with local binary pattern histogram features. Measurement 145, 214–225 (2019)

    Article  Google Scholar 

  53. Hu, L., Cui, J.: Digital image recognition based on fractional-order-pca-svm coupling algorithm. Measurement 145, 150–159 (2019)

    Article  Google Scholar 

  54. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data. arXiv:1306.6709 (2013)

  55. Wang, F., Zuo, W., Zhang, L., Meng, D., Zhang, D.: A kernel classification framework for metric learning. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1950–1962 (2015)

    Article  MathSciNet  Google Scholar 

  56. Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition. IEEE Trans. Inf. Forensics Secur. 11(9), 1984–1996 (2016)

    Article  Google Scholar 

  57. Esther Gonzalez, L.A., Mazorra, L.: Ph.D. thesis, Universidad de Las Palmas de Gran Canaria (2008). http://www.ctim.es/-research_works/-ami_ear_database/

  58. Frejlichowski, D., Tyszkiewicz, N.: The west pomeranian university of technology ear database—a tool for testing biometric algorithms. In: Proceedings of the International Conference Image Analysisand Recognition, pp. 227–234. Springer, Berlin (2010)

    Chapter  Google Scholar 

  59. Omara, I., Zhang, H., Wang, F., Hagag, A., Li, X., Zuo, W.: Metric learning with dynamically generated pairwise constraints for ear recognition. Information 9(9), 215 (2018)

    Article  Google Scholar 

  60. Raghavendra, R., Raja, K.B., Busch, C.: Ear recognition after ear lobe surgery: a preliminary study. In: IEEE International Conference on Identity, Security and Behavior Analysis, pp. 1–6 (2016)

  61. Hassaballah, M., Alshazly, H.A., Ali, A.A.: Ear recognition using local binary patterns: a comparative experimental study. Expert Syst. Appl. 118, 182–200 (2019)

    Article  Google Scholar 

  62. Chowdhury, D.P., Bakshi, S., Guo, G., Sa, P.K.: On applicability of tunable filter bank based feature for ear biometrics: a study from constrained to unconstrained. J. Med. Syst. 42(1), 11 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the cooperation between Higher Education Commission of Egypt and Chinese Government, the National Natural Science Foundation of China (No. 81671768), and the National Key R&D program of China (Grant No. 2017YFC0112804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhi Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omara, I., Hagag, A., Ma, G. et al. A novel approach for ear recognition: learning Mahalanobis distance features from deep CNNs. Machine Vision and Applications 32, 38 (2021). https://doi.org/10.1007/s00138-020-01155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01155-5

Keywords

Navigation