Skip to main content
Log in

Head and camera rotation invariant eye tracking algorithm based on segmented group method of data handling

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Eye-gaze tracking through camera is commonly used in a number of areas, such as computer user interface systems, sports science, psychology, and biometrics. The robustness of the head and camera rotation tracking algorithm has been a critical problem in recent years. In this paper, Haar-like features and a modified version of the group method of data handling, as well as segmented regression, are used together to find the base points of the eyes in a facial image. Then, a geometric transformation is applied to detect precise eye-gaze direction. The proposed algorithm is tested on GI4E and Columbia Gaze datasets and compared to other algorithms. The results show adequate accuracy, especially when the head/camera is rotated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pieters, R., Wedel, M.: Attention capture and transfer in advertising: brand, pictorial, and text-size effects. J. Mark. 68(2), 36–50 (2004)

    Article  Google Scholar 

  2. Vickers, J.N.: Advances in coupling perception and action: the quiet eye as a bidirectional link between gaze, attention, and action. Prog. Brain Res. 174, 279–288 (2009)

    Article  Google Scholar 

  3. Strandvall, T.: Eye tracking in human-computer interaction and usability research. In: IFIP Conference on Human–Computer Interaction. Springer (2009)

  4. Holland, C., Komogortsev, O.V.: Biometric identification via eye movement scanpaths in reading. In: Biometrics (IJCB), pp. 1–8. IEEE (2011)

  5. Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Guidelines. Elsevier, Amsterdam (2013)

    Google Scholar 

  6. Farroni, T., Johnson, M.H., Csibra, G.: Mechanisms of eye gaze perception during infancy. J. Cogn. Neurosci. 16(8), 1320–1326 (2004)

    Article  Google Scholar 

  7. Yoon, H.S., et al.: Driver’s eye-based gaze tracking system by one-point calibration. Multimed. Tools Appl. 78(6), 7155–7179 (2019)

    Article  Google Scholar 

  8. Yoon, H.S., et al.: Driver Gaze detection based on deep residual networks using the combined single image of dual near-infrared cameras. IEEE Access 7, 93448–93461 (2019)

    Article  Google Scholar 

  9. Eid, M.A., Giakoumidis, N., El Saddik, A.: A novel eye-gaze-controlled wheelchair system for navigating unknown environments: case study with a person with ALS. IEEE Access 4, 558–573 (2016)

    Article  Google Scholar 

  10. Skinner, C.E., Buswell, G.T., Corey, S.M.: Readings in Educational Psychology. Farrar & Rinehart, Incorporated, New York (1937)

    Google Scholar 

  11. Ebisawa, Y., Satoh, S.I.: Effectiveness of pupil area detection technique using two light sources and image difference method. In: Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ (1993)

  12. Ji, Q., Yang, X.: Real time visual cues extraction for monitoring driver vigilance. In: Computer Vision Systems: Second International Workshop, ICVS 2001 Vancouver, Canada, July 7–8, 2001 Proceedings, B. Schiele and G. Sagerer, Editors, pp. 107–124. Springer, Berlin (2001)

  13. Zhu, Z., Ji, Q.: Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput. Vis. Image Underst. 98(1), 124–154 (2005)

    Article  Google Scholar 

  14. Lee, E.C., Park, K.R.: A robust eye gaze tracking method based on a virtual eyeball model. Mach. Vis. Appl. 20(5), 319–337 (2009)

    Article  Google Scholar 

  15. Voßkühler, A., et al.: OGAMA (Open Gaze and Mouse Analyzer): open-source software designed to analyze eye and mouse movements in slideshow study designs. Behav. Res. Methods 40(4), 1150–1162 (2008)

    Article  Google Scholar 

  16. Kassner, M., Patera, W., Bulling, A.: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication. ACM (2014)

  17. Draelos, M., et al.: Intel realsense = real low cost gaze. In: 2015 IEEE International Conference on Image Processing (ICIP). IEEE (2015)

  18. Clemotte, A., et al.: Accuracy and precision of the Tobii X2-30 eye-tracking under non ideal conditions. Eye 16(3), 2 (2014)

    Google Scholar 

  19. Sewell, W., Komogortsev, O.: Real-time eye gaze tracking with an unmodified commodity webcam employing a neural network. In: CHI’10 Extended Abstracts on Human Factors in Computing Systems. ACM (2010)

  20. Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye location information for gaze estimation. IEEE Trans. Image Process. 21(2), 802–815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huynh, T.-H.: A new eye gaze detection algorithm using PCA features and recurrent neural networks. In: 2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA). IEEE (2013)

  22. Smith, B.A., et al.; Gaze locking: passive eye contact detection for human-object interaction. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology. ACM (2013)

  23. Xiong, X., et al.: Eye gaze tracking using an RGBD camera: a comparison with a RGB solution. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 1113–1121. ACM, Seattle, Washington (2014)

  24. Bengoechea, J.J., et al.: Evaluation of accurate eye corner detection methods for gaze estimation. J. Eye Mov. Res. 7(3), 1–8 (2014)

    Google Scholar 

  25. George, A., Routray, A.: Fast and accurate algorithm for eye localisation for gaze tracking in low-resolution images. IET Comput. Vis. 10(7), 660–669 (2016)

    Article  Google Scholar 

  26. Park, S., Spurr, A., Hilliges, O.: Deep pictorial gaze estimation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

  27. Kato, T., et al.: Gaze region estimation algorithm without calibration using convolutional neural network. In: Proceedings of the 7th ACIS International Conference on Applied Computing and Information Technology. ACM (2019)

  28. Reddy, T.K., Gupta, V., Behera, L.: Autoencoding convolutional representations for real-time eye-gaze detection. In: Computational Intelligence: Theories, Applications and Future Directions-Volume II, pp. 229–238. Springer (2019)

  29. Wang, K., Su, H., Ji, Q.: Neuro-inspired eye tracking with eye movement dynamics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

  30. Yang, L., et al.: A dual-cameras-based driver gaze mapping system with an application on non-driving activities monitoring. IEEE Trans. Intell. Transp. Syst. 1–10 (2019)

  31. Huey, E.B.: The Psychology and Pedagogy of Reading: With a Review of the History of Reading and Writing and of Methods, Text, and Hygiene of Reading. Macmillan, New York (1908)

    Google Scholar 

  32. Villanueva, A., et al.: Hybrid method based on topography for robust detection of iris center and eye corners. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 9(4), 25 (2013)

    Google Scholar 

  33. Jyoti, S., Dhall, a.: Automatic eye gaze estimation using geometric & texture-based networks. In: 2018 24th International Conference on Pattern Recognition (ICPR). IEEE (2018)

  34. Wood, E., et al.: A 3D morphable eye region model for gaze estimation. In: European Conference on Computer Vision. Springer (2016)

  35. Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, pp. 137–154. IEEE (2004)

  36. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  37. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: Proceedings. 2002 International Conference on Image Processing. 2002. IEEE (2002)

  38. Messom, C., Barczak, A.: Fast and efficient rotated haar-like features using rotated integral images. In: Australian Conference on Robotics and Automation (2006)

  39. Zhang, X., et al.: Eye location based on Adaboost and random forests. J. Softw. 7(10), 2365–2371 (2012)

    Google Scholar 

  40. Xu, W., Lee, E.-J.: Eye detection and tracking using rectangle features and integrated eye tracker by web camera. Int. J. Multimed. Ubiquitous Eng. 8, 25–34 (2013)

    Google Scholar 

  41. Ivakhnenko, A., Ivakhnenko, G.: The review of problems solvable by algorithms of the group method of data handling (GMDH). Pattern Recognit. Image Anal. 5, 527–535 (1995)

    Google Scholar 

  42. Kondo, T., Ueno, J.: Multi-layered GMDH-type neural network self-selecting optimum neural network architecture and its application to 3-dimensional medical image recognition of blood vessels. Int. J. Innov. Comput. Inf. Control 4(1), 175–187 (2008)

    Google Scholar 

  43. Kondo, T., Pandya, A.S., Zurada, J.M.: GMDH-type neural networks and their application to the medical image recognition of the lungs. In: 38th Annual Conference Proceedings of the SICE Annual, 1999. IEEE (1999)

  44. Back, A.D., Tsoi, A.C.: FIR and IIR synapses, a new neural network architecture for time series modeling. Neural Comput. 3(3), 375–385 (1991)

    Article  Google Scholar 

  45. Marateb, H.R., et al.: Prediction of dyslipidemia using gene mutations, family history of diseases and anthropometric indicators in children and adolescents: the CASPIAN-III study. Comput. Struct. Biotechnol. J. 16, 121–130 (2018)

    Article  Google Scholar 

  46. Rayegani, F., Onwubolu, G.C.: Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int. J. Adv. Manuf. Technol. 73(1–4), 509–519 (2014)

    Article  Google Scholar 

  47. Ravisankar, P., Ravi, V.: Financial distress prediction in banks using group method of data handling neural network, counter propagation neural network and fuzzy ARTMAP. Knowl. Based Syst. 23(8), 823–831 (2010)

    Article  Google Scholar 

  48. Ungaro, F., Calzolari, C., Busoni, E.: Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano-Veneta region of North Italy: water retention properties. Geoderma 124(3–4), 293–317 (2005)

    Article  Google Scholar 

  49. Binder, H., Sauerbrei, W., Royston, P.: Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response. Stat. Med. 32(13), 2262–2277 (2013)

    Article  MathSciNet  Google Scholar 

  50. Ramsay, J.: A functional approach to modeling test data. In: Handbook of Modern Item Response Theory, pp. 381–394. Springer (1997)

  51. Doynov, P., Derakhshani, R.: A standoff system for noncooperative ocular biometrics. In: 2012 IEEE Conference on Technologies for Homeland Security (HST). IEEE (2012)

  52. Venkateswarlu, R.: Eye gaze estimation from a single image of one eye. In: Ninth IEEE International Conference on Computer Vision, 2003. Proceedings. IEEE (2003)

  53. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  54. Valenti, R., Gevers, T.: Accurate eye center location through invariant isocentric patterns. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1785–1798 (2012)

    Article  Google Scholar 

  55. Baek, S.-J., et al.: Eyeball model-based iris center localization for visible image-based eye-gaze tracking systems. IEEE Trans. Consum. Electron. 59(2), 415–421 (2013)

    Article  Google Scholar 

  56. Zhu, J., et al.: Multi-class adaboost. Stat. Interface 2(3), 349–360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kasianiuk, K.: White Box, Black Box and Self-Organization. Kybernetes, London (2016)

    Book  Google Scholar 

  58. Wang, J.-G., Sung, E., Venkateswarlu, R.: Estimating the eye gaze from one eye. Comput. Vis. Image Underst. 98(1), 83–103 (2005)

    Article  Google Scholar 

  59. Baig, M.A., Munir, R., Munir, W.: Computer vision syndrome: a rising occupation hazard. Pak. J. Med. Res. 58(1), 31 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Rasti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbian, M.R., Rasti, J. Head and camera rotation invariant eye tracking algorithm based on segmented group method of data handling. Machine Vision and Applications 31, 59 (2020). https://doi.org/10.1007/s00138-020-01112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01112-2

Keywords

Navigation