Ahmadi, N., Akbarizadeh, G.: Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Comput. Appl. 32(7), 1–15 (2018)
Google Scholar
Akbarizadeh, G.: A new statistical-based kurtosis wavelet energy feature for texture recognition of sar images. IEEE Trans. Geosci. Remote Sens. 50(11), 4358–4368 (2012)
Article
Google Scholar
Akbarizadeh, G., Rahmani, M.: Efficient combination of texture and color features in a new spectral clustering method for polsar image segmentation. Natl. Acad. Sci. Lett. 40(2), 117–120 (2017)
MathSciNet
Article
Google Scholar
Akbarizadeh, G., Tirandaz, Z., Aleghafour, M.: Hierarchical unsupervised segmentation of sar images via super pixel and lossy data compression. J. Electr. Eng. Univ. Tabriz. 46(2), 1–14 (2015)
Google Scholar
Akbarizadeh, G., Tirandaz, Z., Kooshesh, M.: A new curvelet-based texture classification approach for land cover recognition of SAR satellite images. Malays. J. Comput. Sci. 27(3), 218–239 (2014)
Google Scholar
Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside–outside net: detecting objects in context with skip pooling and recurrent neural networks. In: CVPR, pp. 2874–2883 (2016)
Chen, D., Ren, S., Wei, Y., Cao, X., Sun, J.: Joint cascade face detection and alignment. In: ECCV, pp. 109–122 (2014)
Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Selective refinement network for high performance face detection. arXiv:1809.02693 (2018)
Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: BMVC (2009)
Farfade, S.S., Saberian, M.J., Li, L.J.: Multi-view face detection using deep convolutional neural networks. In: ICMR, pp. 643–650 (2015)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. In: TPAMI
Ghiasi, G., Fowlkes, C.C.: Occlusion coherence: detecting and localizing occluded faces (2015). arXiv:1506.08347
Girshick, R.: Fast r-cnn. In: ICCV, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: ECCV pp. 346–361 (2014)
Howard, A.G.: Some improvements on deep convolutional neural network based image classification (2013). arXiv:1312.5402
Huang, J., Rathod, V., et al.: Speed/accuracy trade-offs for modern convolutional object detectors (2016). arXiv:1611.10012
Jain, V., Learned-Miller, E.: Fddb: A benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst (2010)
Jiang, H., Learned-Miller, E.: Face detection with the faster r-cnn. In: FG, pp. 650–657 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Kumar, V., Namboodiri, A., Jawahar, C.: Visual phrases for exemplar face detection. In: ICCV, pp. 1994–2002 (2015)
Li, H., Hua, G., Lin, Z., Brandt, J., Yang, J.: Probabilistic elastic part model for unsupervised face detector adaptation. In: ICCV, pp. 793–800 (2013)
Li, H., Lin, Z., Brandt, J., Shen, X., Hua, G.: Efficient boosted exemplar-based face detection. In: CVPR, pp. 1843–1850 (2014)
Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: CVPR, pp. 5325–5334 (2015)
Li, J., Wang, Y., Wang, C., Tai, Y., Qian, J., Yang, J., Wang, C., Li, J., Huang, F.: Dsfd: dual shot face detector (2018). arXiv:1810.10220
Li, J., Zhang, Y.: Learning surf cascade for fast and accurate object detection. In: CVPR, pp. 3468–3475 (2013)
Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head r-cnn: in defense of two-stage object detector (2017). arXiv preprint arXiv:1711.07264
Liao, S., Jain, A.K., Li, S.Z.: A fast and accurate unconstrained face detector. TPAMI 38(2), 211–223 (2016)
Article
Google Scholar
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection (2017). arXiv:1708.02002
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: single shot multibox detector. In: ECCV, pp. 21–37. Springer (2016)
Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks (2015). arXiv:1511.06343
Markus, N., Frljak, M., Pandzic, I.S., Ahlberg, J., Forchheimer, R.: A method for object detection based on pixel intensity comparisons organized in decision trees. In: CoRR (2014)
Mathias, M., Benenson, R., Pedersoli, M., Van Gool, L.: Face detection without bells and whistles In: ECCV, pp. 720–735. Springer (2014)
Modava, M., Akbarizadeh, G., Soroosh, M.: Integration of spectral histogram and level set for coastline detection in SAR images. IEEE Trans. Aerosp. Electron. Syst. 55(2), 810–819 (2018)
Article
Google Scholar
Modava, M., Akbarizadeh, G., Soroosh, M.: Hierarchical coastline detection in SAR images based on spectral-textural features and global-local information. IET Radar Sonar Navig. 13(12), 2183–2195 (2019)
Article
Google Scholar
Moghaddam, A.E., Akbarizadeh, G., Kaabi, H.: Automatic detection and segmentation of blood vessels and pulmonary nodules based on a line tracking method and generalized linear regression model. SIViP 13(3), 457–464 (2019)
Article
Google Scholar
Najibi, M., Samangouei, P., Chellappa, R., Davis, L.: Ssh: single stage headless face detector. In: ICCV (2017)
Pham, M.T., Gao, Y., Hoang, V.D.D., Cham, T.J.: Fast polygonal integration and its application in extending haar-like features to improve object detection. In: CVPR, pp. 942–949 (2010)
Raeisi, A., Akbarizadeh, G., Mahmoudi, A.: Combined method of an efficient cuckoo search algorithm and nonnegative matrix factorization of different zernike moment features for discrimination between oil spills and lookalikes in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(11), 4193–4205 (2018)
Article
Google Scholar
Ranjan, R., Patel, V.M., Chellappa, R.: A deep pyramid deformable part model for face detection. In: BTAS, pp. 1–8 (2015)
Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition (2016). arXiv:1603.01249
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. TPAMI 39(6), 1137–1149 (2017)
Article
Google Scholar
Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. TPAMI 20(1), 23–38 (1998)
Article
Google Scholar
Samadi, F., Akbarizadeh, G., Kaabi, H.: Change detection in sar images using deep belief network: a new training approach based on morphological images. IET Image Proc. 13(12), 2255–2264 (2019)
Article
Google Scholar
Sharifzadeh, F., Akbarizadeh, G., Kavian, Y.S.: Ship classification in SAR images using a new hybrid CNN-MLP classifier. J. Indian Soc. Remote Sens. 47(4), 551–562 (2019)
Article
Google Scholar
Shen, X., Lin, Z., Brandt, J., Wu, Y.: Detecting and aligning faces by image retrieval. In: CVPR, pp. 3460–3467 (2013)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016)
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Moreno-Noguer, F.: Fracking deep convolutional image descriptors (2014). arXiv:1412.6537
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
Sun, X., Wu, P., Hoi, S.C.: Face detection using deep learning: an improved faster RCNN approach (2017). arXiv:1701.08289
Sun, X., Wu, P., Hoi, S.C.: Face detection using deep learning: an improved faster RCNN approach. Neurocomputing 299, 42–50 (2018)
Article
Google Scholar
Taibi, F., Akbarizadeh, G., Farshidi, E.: Robust reservoir rock fracture recognition based on a new sparse feature learning and data training method. Multidimens. Syst. Signal Process. 30(4), 2113–2146 (2019)
Article
Google Scholar
Tang, X., Du, D.K., He, Z., Liu, J.: Pyramidbox: A context-assisted single shot face detector. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 797–813 (2018)
Tirandaz, Z., Akbarizadeh, G., Kaabi, H.: Polsar image segmentation based on feature extraction and data compression using weighted neighborhood filter bank and hidden markov random field-expectation maximization. Measurement 153, 107432 (2020)
Article
Google Scholar
Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)
Article
Google Scholar
Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137–154 (2004)
Article
Google Scholar
Wan, S., Chen, Z., Zhang, T., Zhang, B., Wong, K.K.: Bootstrapping face detection with hard negative examples (2016). arXiv:1608.02236
Wang, H., Li, Z., Ji, X., Wang, Y.: Face r-cnn (2017). arXiv:1706.01061
Wang, J., Yuan, Y., Yu, G.: Face attention network: an effective face detector for the occluded faces (2017). arXiv:1711.07246
Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: ICCV, pp. 2794–2802 (2015)
Wang, Y., Ji, X., Zhou, Z., Wang, H., Li, Z.: Detecting faces using region-based fully convolutional networks (2017). arXiv:1709.05256
Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Learning to track for spatio-temporal action localization. In: ICCV, pp. 3164–3172 (2015)
Yan, J., Lei, Z., Wen, L., Li, S.Z.: The fastest deformable part model for object detection. In: CVPR pp. 2497–2504 (2014)
Yan, J., Zhang, X., Lei, Z., Li, S.Z.: Face detection by structural models. Image Vis. Comput. 32(10), 790–799 (2014)
Article
Google Scholar
Yang, B., Yan, J., Lei, Z., Li, S.Z.: Aggregate channel features for multi-view face detection. In: IJCB, pp. 1–8 (2014)
Yang, B., Yan, J., Lei, Z., Li, S.Z.: Convolutional channel features. In: ICCV, pp. 82–90 (2015)
Yang, B., Yan, J., Lei, Z., Li, S.Z.: Craft objects from images. In: CVPR, pp. 6043–6051 (2016)
Yang, S., Luo, P., Loy, C.C., Tang, X.: From facial parts responses to face detection: a deep learning approach. In: ICCV, pp. 3676–3684 (2015)
Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: CVPR, pp. 5525–5533 (2016)
Yang, S., Xiong, Y., Loy, C.C., Tang, X.: Face detection through scale-friendly deep convolutional networks (2017). arXiv:1706.02863
Zalpour, M., Akbarizadeh, G., Alaei-Sheini, N.: A new approach for oil tank detection using deep learning features with control false alarm rate in high-resolution satellite imagery. Int. J. Remote Sens. 41(6), 2239–2262 (2020)
Article
Google Scholar
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. SPL 23(10), 1499–1503 (2016)
Google Scholar
Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block lbp representation. In: ICB, pp. 11–18. Springer (2007)
Zhang, S., Zhu, R., Wang, X., Shi, H., Fu, T., Wang, S., Mei, T.: Improved selective refinement network for face detection (2019). arXiv:1901.06651
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: Faceboxes: a CPU real-time face detector with high accuracy (2017). arXiv:1708.05234
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: S3fd: Single shot scale-invariant face detector (2017). arXiv:1708.05237
Zhang, Z., Shen, W., Qiao, S., Wang, Y., Wang, B., Yuille, A.L.: Robust face detection via learning small faces on hard images. In: CoRR abs/1811.11662 (2018). http://arxiv.org/abs/1811.11662
Zhu, C., Zheng, Y., Luu, K., Savvides, M.: Cms-rcnn: contextual multi-scale region-based CNN for unconstrained face detection. In: Deep Learning for Biometrics, pp. 57–79. Springer (2017)
Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: CVPR, pp. 1491–1498 (2006)
Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR, pp. 2879–2886 (2012)