Skip to main content
Log in

Weighted-learning-instance-based retrieval model using instance distance

  • Original paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

High-quality retrieval techniques can effectively retrieve target images from millions of images, and some classic techniques are widely used in different fields. As a classic image retrieval technique, deep learning shows remarkable advantages in significantly improving retrieval results. However, high-quality retrieval results highly depend on sufficient learning instances. When no sufficient learning instances exist to support learning model construction, then retrieval quality reduces remarkably. In most cases, sufficient learning instances lead to wasting of significant computing and human resources. Aiming at the aforementioned problem, we proposed a weighted-learning-instance-based retrieval model requiring instance distance calculation. Concretely, reference learning instance optimization, instance distance calculation, and innovative cost function construction are combined which could directly contribute to build up the previous model. Firstly, high-quality reference learning instances could be selected by learning instance optimization model. Then, combined with weights of learning instances calculated by instance distance, the innovative cost function could be constructed which could make full use of learning instances under various circumstances. More importantly, this model can significantly reduce the number of learning instances through instance optimization and weight definition while maintaining high level of retrieval quality. Adequate experimental results based on a large database show robustness and effectiveness of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 10(1), 39–62 (1999)

    Article  Google Scholar 

  2. Eakins, J., Graham, M.: Content-based image retrieval (1999)

  3. Raftery, A.E.: Bayesian model selection in social research. Sociol. Methodol. 25, 111–163 (1995)

    Article  Google Scholar 

  4. Horowitz, E., Zorat, A.: The binary tree as an interconnection network: applications to multiprocessor systems and VLSI. IEEE Trans. Comput. 4, 247–253 (1981)

    Article  MathSciNet  Google Scholar 

  5. Jain, A.K.: Data clustering: 50 years beyond K-means[J]. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  7. Lin, Y., Lv, F., Zhu, S., et al.: Large-scale image classification: fast feature extraction and SVM training. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1689–1696. IEEE, Washington (2011)

  8. Wang, J., Yang, J., Yu, K., et al.: Locality-constrained linear coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367. IEEE, Washington (2010)

  9. Alham, N.K., Li, M., Liu, Y., et al.: A MapReduce-based distributed SVM algorithm for automatic image annotation. Comput. Math Appl. 62(7), 2801–2811 (2011)

    Article  MATH  Google Scholar 

  10. Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-SVMs for object detection and beyond. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 89–96. IEEE, Washington (2011)

  11. Guo, Y., Liu, Y., Oerlemans, A., et al.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  12. Cheng, G., Zhou, P., Han, J.: RIFD-CNN: rotation-invariant and fisher discriminative convolutional neural networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2884–2893. IEEE Computer Society, Washington (2016)

  13. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4476–4484. IEEE Computer Society, Washington (2017)

  14. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  15. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: AISTATS, vol. 1, p. 3 (2009)

  17. Ngiam, J., Chen, Z., Koh, P.W., et al.: Learning deep energy models. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1105–1112 (2011)

  18. Poultney, C., Chopra, S., Cun, Y.L.: Efficient learning of sparse representations with an energy-based model. In: Advances in Neural Information Processing Systems, pp. 1137–1144 (2007)

  19. Vincent, P., Larochelle, H., Bengio, Y., et al.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM, New York (2008)

  20. Rifai, S., Vincent, P., Muller, X., et al.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 833–840 (2011)

  21. Konda, K., Memisevic, R., Krueger, D.: Zero-bias autoencoders and the benefits of co-adapting features. Stat 1050: 13 (2014)

  22. Arora, S., et al.: Simple, efficient, and neural algorithms for sparse coding. arXiv preprint arXiv:1503.00778 (2015)

  23. Yang, J, et al.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE, Washington (2009)

  24. Lu, X., Chen, Y., Li, X.: Hierarchical recurrent neural hashing for image retrieval with hierarchical convolutional features. IEEE Trans. Image Process. 27(1), 106–120 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27(1), 38–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, X., Ding, G.: Query expansion for object retrieval with active learning using BoW and CNN feature. Multimed. Tools Appl. 76(9), 12133–12147 (2017)

    Article  Google Scholar 

  27. Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2017)

    Article  MathSciNet  Google Scholar 

  28. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)

    Article  Google Scholar 

  29. Lu, X., Zheng, X., Li, X.: Latent semantic minimal hashing for image retrieval. IEEE Trans. Image Process. 26(1), 355–368 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ding, G., et al.: Large-scale image retrieval with sparse embedded hashing. Neurocomputing 257, 24–36 (2017)

    Article  Google Scholar 

  31. Han, J., Cheng, G., Li, Z., Zhang, D.: A unified metric learning-based framework for co-saliency detection. IEEE Trans. Circuits Syst. Video Technol. 99, 1–1 (2017)

    Google Scholar 

  32. Zhang, D., Meng, D., Han, J.: Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 865–878 (2016)

    Article  Google Scholar 

  33. Munajat, M.D.E., Widyantoro, D.H., Munir, R.: Road detection system based on RGB histogram filterization and boundary classifier. In: International Conference on Advanced Computer Science and Information Systems, pp. 195–200. IEEE, Washington (2016)

  34. Berens, J., Finlayson, G.D., Qiu, G.: Image indexing using compressed colour histograms. IEE Proc. Vis. Image Signal Process. 147(4), 349–355 (2000)

    Article  Google Scholar 

  35. Van Ginneken, B., Koenderink, J.J., Dana, K.J.: Texture histograms as a function of irradiation and viewing direction[J]. Int. J. Comput. Vis. 31(2–3), 169–184 (1999)

    Article  Google Scholar 

  36. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  37. van de Sande, K., Gevers, T., Snoek, C.: Evaluation of color descriptors for object and scene recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, Anchorage (2008)

  38. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of ACM International Conference on Image and Video Retrieval, pp. 672–679. ACM, New York (2007)

  39. James, H., et al.: Scene completion using millions of photographs. ACM Trans. Graph. 26(3), 4 (2007)

    Article  Google Scholar 

  40. Wang, W., Shen, J.: Deep cropping via attention box prediction and aesthetics assessment. In: IEEE International Conference on Computer Vision (2017)

  41. Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)

    Article  Google Scholar 

  42. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI 2006, vol. 6, pp. 775–780

  43. Fellbaum, C.: WordNet. Wiley, New York (1998)

    Book  MATH  Google Scholar 

  44. Wu, H., Miao, Z., Wang, Y., et al.: Optimized recognition with few instances based on semantic distance. Vis. Comput. 31(4), 367–375 (2015)

    Article  Google Scholar 

  45. Hearst, M.A., Dumais, S.T., Osman, E., et al.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  46. Vapnik, V.: Principles of risk minimization for learning theory. In: NIPS, pp. 831–838 (1991)

  47. Keogh, E., Mueen, A.: Curse of dimensionality. In: Encyclopedia of Machine Learning, pp. 257–258. Springer, Boston, MA (2011)

  48. Min, J.H., Lee, Y.C.: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Syst. Appl. 28(4), 603–614 (2005)

    Article  Google Scholar 

  49. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of short text snippets. In: Proceedings of the 15th International Conference on World Wide Web, pp. 377–386. ACM, London (2006)

  50. Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15(7), 1667–1689 (2003)

    Article  MATH  Google Scholar 

  51. Venu, N, Anuradha, B.: Integration of hyperbolic tangent and Gaussian kernels for fuzzy C-means algorithm with spatial information for MRI segmentation. In: 2013 Fifth International Conference on Advanced Computing (ICoAC), pp. 280–285. IEEE, Washington (2013)

  52. Kuang, F., Zhang, S., Jin, Z., et al.: A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection. Soft. Comput. 19(5), 1187–1199 (2015)

    Article  MATH  Google Scholar 

  53. Gao, X., Hou, J.: An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process. Neurocomputing 174, 906–911 (2016)

    Article  Google Scholar 

  54. Subasi, A.: Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43(5), 576–586 (2013)

    Article  MathSciNet  Google Scholar 

  55. Ch, S., Anand, N., Panigrahi, B.K., et al.: Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101, 18–23 (2013)

    Article  Google Scholar 

  56. Wang, G., Forsyth, D., Hoiem, D.: Comparative object similarity for improved recognition with few or no examples. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3525–3532. IEEE, Washington (2010)

  57. Wu, H., Miao, Z., Chen, J., et al.: Recognition improvement through the optimisation of learning instances. IET Comput. Vis. 9(3), 419–427 (2015)

    Article  Google Scholar 

  58. Li, Y., Bie, R., Zhang, C., et al.: Optimized learning instance-based image retrieval. Multimed. Tools Appl. 76(15), 16749–16766 (2016)

    Article  Google Scholar 

  59. Wu, H., Li, Y., Bi, X., et al.: Joint entropy based learning model for image retrieval. J V Commun Image Represent 55, 415–423 (2018)

    Article  Google Scholar 

  60. Qian, X., Wang, H., Zhao, Y., Hou, X., Hong, R., Wang, M., Tang, Y.Y.: Image location inference by multisaliency enhancement. IEEE Trans. Multimed. 19(4), 813–821 (2017)

    Article  Google Scholar 

  61. Qian, X., Xiaoqiang, L., Han, J., Bo, D., Li, X.: On combining social media and spatial technology for POI cognition and image localization. Proc. IEEE 105(10), 1937–1952 (2017)

    Article  Google Scholar 

  62. Qian, X., Li, C., Lan, K., Hou, X., Li, Z., Han, J.: POI summarization by aesthetics evaluation from crowd source social media. IEEE Trans. Image Process. 27(3), 1178–1189 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Han, J., Quan, R., Zhang, D., Nie, F.: Robust object co-segmentation using background prior. IEEE Trans. Image Process. 27(4), 1639–1651 (2018)

    Article  MathSciNet  Google Scholar 

  64. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. (TOG) 28(5), 147 (2009)

    Article  Google Scholar 

  65. Wu, H., Li, Y., Miao, Z., et al.: A new sampling algorithm for high-quality image matting. J. Vis. Commun. Image Represent. 38, 573–581 (2016)

    Article  Google Scholar 

  66. Wu, H., Miao, Z., Wang, Y., et al.: Image completion with multi-image based on entropy reduction. Neurocomputing 159(C), 157–171 (2015)

    Article  Google Scholar 

  67. Shafarenko, L., Petrou, M., Kittler, J.: Automatic watershed segmentation of randomly textured color images. IEEE Trans. Image Process. 6(11), 1530–1544 (1997)

    Article  Google Scholar 

  68. Russell, B.C., Torralba, A., Murphy, K.P., et al.: LabelMe: a database and web-based tool for image annotation[J]. Int. J. Comput. Vis. 77(1), 157–173 (2008)

    Article  Google Scholar 

  69. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

  70. Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE, Washington (2009)

  71. Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW: unsupervised fine-tuning with hard examples. In: European Conference on Computer Vision, pp. 3–20. Springer, Cham (2016)

  72. Dimitrovski, I., Kocev, D., Loskovska, S., et al.: Improving bag-of-visual-words image retrieval with predictive clustering trees. Inf. Sci. 329, 851–865 (2016)

    Article  Google Scholar 

  73. Yu, J., et al.: Learning to rank using user clicks and visual features for image retrieval. IEEE Trans. Cybern. 45(4), 767–779 (2015)

    Article  Google Scholar 

  74. Vedaldi, A., Zisserman, A.: Image classification practical. http://www.robots.ox.ac.uk/~vgg/share/practical-image-classification.htm (2011)

  75. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE, Washington (2006)

  76. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Computer Vision—ECCV 2006, pp. 490–503 (2006)

Download references

Acknowledgements

This research is sponsored by National Natural Science Foundation of China (Nos. 61601033, 61571049, 61401029), Fundamental Research Funds for the Central Universities (No. 2016NT14), Beijing Municipal Natural Science Foundation (No. 9174027) and Beijing Advanced Innovation Center for Future Education (BJAICFE2016IR-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqi Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, Y., Xiong, J. et al. Weighted-learning-instance-based retrieval model using instance distance. Machine Vision and Applications 30, 163–176 (2019). https://doi.org/10.1007/s00138-018-0988-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0988-x

Keywords

Navigation