Machine Vision and Applications

, Volume 29, Issue 3, pp 433–451 | Cite as

Multiple sperm tracking in microscopic videos using modified GM-PHD filter

  • Hamed Danandeh Hesar
  • Hamid Abrishami Moghaddam
  • Amirhossein Safari
  • Poopak Eftekhari-Yazdi
Original Paper


This paper presents a method for simultaneous tracking of multiple sperms using modified Gaussian mixture probability hypothesis density (GM-PHD) filter. In order to track sperms with spurious motion, a modified model is presented to adapt the GM-PHD filter for nonlinear dynamic movement of sperms. Furthermore, the “pruning” step in the GM-PHD filter is modified to handle situations like occlusion or closely moving targets. Our experiments demonstrate more effectivity of the proposed method in terms of sperms’ occlusion handling and trajectory extraction compared to the conventional GM-PHD filter. In particular, the new method performs well in managing the labels of occluded sperms after separation and in tracking of temporarily disappeared sperms when they emerge again in the tracking space.


GM-PHD filter Multiple target tracking Sperm motility 


  1. 1.
    Guzick, D.S., Overstreet, J.W., Factor-Litvak, P., Brazil, C.K., Nakajima, S.T., Coutifaris, C., et al.: Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 345, 1388–1393 (2001)CrossRefGoogle Scholar
  2. 2.
    Organization, W.H.: WHO Laboratory Manual for the Examination of Human Semen and Sperm-cervical Mucus Interaction, vol. 4. Cambridge University Press, Cambridge (1992)Google Scholar
  3. 3.
    Hirano, Y., Shibahara, H., Obara, H., Suzuki, T., Takamizawa, S., Yamaguchi, C., et al.: ANDROLOGY: relationships between sperm motility characteristics assessed by the computer-aided sperm analysis (CASA) and fertilization rates in vitro. J. Assist. Reprod. Genet. 18, 215–220 (2001)CrossRefGoogle Scholar
  4. 4.
    Sharon, M., David, M., Lynn, F.: Guidelines on the application of CASA technology in the analysis of spermatozoa. ESHRE andrology special interest group. European Society for Human reproduction and embryology. Hum. Reprod. 13, 142–145 (1998)CrossRefGoogle Scholar
  5. 5.
    Tomlinson, M.J., Pooley, K., Simpson, T., Newton, T., Hopkisson, J., Jayaprakasan, K., et al.: Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms. Fertil. Steril. 93, 1911–1920 (2010)CrossRefGoogle Scholar
  6. 6.
    Sørensen, L., Østergaard, J., Johansen, P., de Bruijne, M.: Multi-object tracking of human spermatozoa. In: Proceedings SPIE, Medical Imaging: Image Processing, 2008, vol. 6914, p. 69142C (2008)Google Scholar
  7. 7.
    Pascual-Gaspar, J., Olmedo, H., Exposito, A., Exposito, A., Finat, J.: A simple and effective system for computer-assisted semen analysis. In: 4th IET International Conference on Advances in Medical, Signal and Information Processing - MEDSIP 2008, Santa Margherita Ligure, 2008, pp. 1–4 (2008)Google Scholar
  8. 8.
    Shi, L.Z., Nascimento, J.M., Chandsawangbhuwana, C., Botvinick, E.L., Berns, M.W.: An automatic system to study sperm motility and energetics. Biomed. Microdevices 10, 573–583 (2008)CrossRefGoogle Scholar
  9. 9.
    Nafisi, V.R., Moradi, M.H., Nasr-Esfahani, M.H.: A template matching algorithm for sperm tracking and classification. Physiol. Meas. 26, 639 (2005)CrossRefGoogle Scholar
  10. 10.
    Mahler, R.P.: Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 39, 1152–1178 (2003)CrossRefGoogle Scholar
  11. 11.
    Vo, B.-N., Ma, W.-K.: The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54, 4091–4104 (2006)CrossRefMATHGoogle Scholar
  12. 12.
    Clark, D., Vo, B.-T., Vo, B.-N.: Gaussian particle implementations of probability hypothesis density filters. In: Aerospace Conference. IEEE 2007, pp. 1–11 (2007)Google Scholar
  13. 13.
    Panta, K., Clark, D.E., Vo, B.-N.: Data association and track management for the Gaussian mixture probability hypothesis density filter. IEEE Trans. Aerosp. Electron. Syst. 45, 1003–1016 (2009)CrossRefGoogle Scholar
  14. 14.
    Eiselein, V., Arp, D., Pätzold, M., Sikora, T.: Real-time multi-human tracking using a probability hypothesis density filter and multiple detectors. In: 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 325–330 (2012)Google Scholar
  15. 15.
    Yazdian-Dehkordi, M., Azimifar, Z., Masnadi-Shirazi, M.: Competitive Gaussian mixture probability hypothesis density filter for multiple target tracking in the presence of ambiguity and occlusion. IET Radar Sonar Navig. 6, 251–262 (2012)Google Scholar
  16. 16.
    Eiselein, V., Senst, T., Keller, I., Sikora, T.: A motion-enhanced hybrid probability hypothesis density filter for real-time multi-human tracking in video surveillance scenarios. In: 2013 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), pp. 6–13 (2013)Google Scholar
  17. 17.
    Si, W., Wang, L., Qu, Z.: Multi-target tracking using an improved Gaussian mixture CPHD filter. Sensors 16, 1964 (2016)CrossRefGoogle Scholar
  18. 18.
    Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24, 843–854 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hamed Danandeh Hesar
    • 1
  • Hamid Abrishami Moghaddam
    • 2
  • Amirhossein Safari
    • 1
  • Poopak Eftekhari-Yazdi
    • 3
  1. 1.Faculty of Electrical EngineeringK.N. Toosi University of TechnologySeyed Khandan, TehranIran
  2. 2.Machine Vision and Medical Image Processing (MVMIP) Lab - Faculty of Electrical EngineeringK.N. Toosi University of TechnologySeyed Khandan, TehranIran
  3. 3.Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran

Personalised recommendations