Machine Vision and Applications

, Volume 29, Issue 3, pp 415–432 | Cite as

Introducing spectral moment features in analyzing the SpecTex hyperspectral texture database

Original Paper


Hyperspectral imaging provides more information than conventional RGB images. However, its high dimensionality prevents its adaptation to the existing image processing techniques. Defining full-band spectral feature is the first missing step, which is currently dealt with indirectly by band selection or dimension reduction. This article proposes a spectral feature extraction method using the mathematical moments to quantify the shape of the reflectance spectrum from different aspects. A whole family of features is presented by changing the moment attributes. All the features and their combinations are extensively tested in texture analysis of a new hyperspectral image database from textile samples (SpecTex). Two supervised experiments are performed: image patch classification and pixel-wise mosaic image segmentation. The proposed features are compared to four other features: the grayscale intensity, the RGB and CIELab values, and the principal components. Also, three analysis methods are tested: co-occurrence matrix, Gabor filter bank, and local binary pattern. In all cases, the moment features outperformed the opponents. Notably, combining the moment features with complementary attributes remarkably improved the performance. The most discriminative combinations are studied and formulated in this article.


Feature extraction Moments Hyperspectral imaging Texture analysis Image database 


  1. 1.
    Safia, A., He, D.-C.: Multiband compact texture unit descriptor for intra-band and inter-band texture analysis. ISPRS J. Photogramm. Remote Sens. 105, 169–185 (2015)CrossRefGoogle Scholar
  2. 2.
    Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)CrossRefGoogle Scholar
  3. 3.
    Brusco, N., Capeleto, S., Fedel, M., Paviotti, A., Poletto, L., Cortelazzo, G.M., Tondello, G.: A system for 3d modeling frescoed historical buildings with multispectral texture information. Mach. Vis. Appl. 17(6), 373–393 (2006)CrossRefGoogle Scholar
  4. 4.
    Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003)CrossRefGoogle Scholar
  5. 5.
    Bouatmane, S., Roula, M.A., Bouridane, A., Al-Maadeed, S.: Round-Robin sequential forward selection algorithm for prostate cancer classification and diagnosis using multispectral imagery. Mach. Vis. Appl. 22(5), 865–878 (2011)CrossRefGoogle Scholar
  6. 6.
    Eckhard, T., Klammer, M., Valero, E.M., Hernández-Andrés, J.: Improved spectral density measurement from estimated reflectance data with kernel ridge regression. In: Image and Signal Processing, ser. Lecture Notes in Computer Science, pp. 79–86. Springer International Publishing (2014)Google Scholar
  7. 7.
    Porebski, A., Vandenbroucke, N., Macaire, L.: Haralick feature extraction from LBP images for color texture classification. In: First Workshops on Image Processing Theory, Tools and Application, IPTA 2008, pp. 1–8 (2008)Google Scholar
  8. 8.
    Khelifi, R., Adel, M., Bourennane, S.: Multispectral texture characterization: application to computer aided diagnosis on prostatic tissue images. EURASIP J. Adv. Signal Process. 2012(1), 118 (2012)CrossRefGoogle Scholar
  9. 9.
    Hauta-Kasari, M., Parkkinen, J., Jaaskelainen, T., Lenz, R.: Multi-spectral texture segmentation based on the spectral cooccurrence matrix. Pattern Anal. Appl. 2(4), 275–284 (1999)CrossRefGoogle Scholar
  10. 10.
    Münzenmayer, C., Volk, H., Küblbeck, C., Spinnler, K., Wittenberg, T.: Multispectral texture analysis using interplane sum-and difference-histograms. In: Joint Pattern Recognition Symposium. Springer, Berlin, Heidelberg, pp. 42–49 (2002)Google Scholar
  11. 11.
    Ledoux, A., Losson, O., Macaire, L.: Color local binary patterns: compact descriptors for texture classification. J. Electron. Imaging 25(6), 061 404–061 404 (2016)CrossRefGoogle Scholar
  12. 12.
    Zhao, W., Du, S.: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54(8), 4544–4554 (2016)CrossRefGoogle Scholar
  13. 13.
    Xu, L., Wong, A., Li, F., Clausi, D.A.: Intrinsic representation of hyperspectral imagery for unsupervised feature extraction. IEEE Trans. Geosci. Remote Sens. 54(2), 1118–1130 (2016)CrossRefGoogle Scholar
  14. 14.
    Puetz, A.M., Olsen, R.C.: Haralick texture features expanded into the spectral domain. In: Defense and Security Symposium. International Society for Optics and Photonics, 623311 (2006)Google Scholar
  15. 15.
    Nouri, D., Lucas, Y., Treuillet, S.: Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods. Int. J. Comput. Assist. Radiol. Surg. 11(12), 2185–2197 (2016)CrossRefGoogle Scholar
  16. 16.
    Sharma, V., Van Gool, L.: Image-level classification in hyperspectral images using feature descriptors, with application to face recognition. arXiv:1605.03428 (2016)
  17. 17.
    Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley, New York (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Zhang, L., Zhang, L., Tao, D., Huang, X.: On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50(3), 879–893 (2012)CrossRefGoogle Scholar
  19. 19.
    Sinha, A., Banerji, S., Liu, C.: New color GPHOG descriptors for object and scene image classification. Mach. Vis. Appl. 25(2), 361–375 (2014)CrossRefGoogle Scholar
  20. 20.
    Mirmehdi, M., Xie, X., Suri, J.: Handbook of Texture Analysis. Imperial College Press, London (2008)CrossRefGoogle Scholar
  21. 21.
    Petrou, M., Sevilla, P.: Image Processing: Dealing with Texture. Wiley, New York (2006)CrossRefGoogle Scholar
  22. 22.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3(6), 610–621 (1973)CrossRefGoogle Scholar
  23. 23.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  24. 24.
    Mäenpää, T.: The Local Binary Pattern Approach to Texture Analysis: Extensions and Applications. Oulun yliopisto, Oulu (2003)Google Scholar
  25. 25.
    Kumar, B., Dikshit, O.: Spectral-spatial classification of hyperspectral imagery based on moment invariants. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8(6), 2457–2463 (2015)CrossRefGoogle Scholar
  26. 26.
    Mirzapour, F., Ghassemian, H.: Moment-based feature extraction from high spatial resolution hyperspectral images. Int. J. Remote Sens. 37(6), 1349–1361 (2016)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Wirkert, S.J., Iszatt, J., Kenngott, H., Wagner, M., Mayer, B., Stock, C., Clancy, N.T., Elson, D.S., Maier-Hein, L.: Tissue classification for laparoscopic image understanding based on multispectral texture analysis. In: SPIE Medical Imaging. International Society for Optics and Photonics, p. 978619 (2016)Google Scholar
  28. 28.
    Kohonen, O.: Retrieval of Databased Spectral Images. Joensuu yliopistopaino, Joensuu (2007)Google Scholar
  29. 29.
    SpecTex database. [Online].
  30. 30.
    Barra, V.: Expanding the local binary pattern to multispectral images using total orderings. In: International Conference on Computer Vision, Imaging and Computer Graphics. Springer, pp. 67–80 (2010)Google Scholar
  31. 31.
    Song, C., Li, P., Yang, F.: Multivariate texture measured by Local binary pattern for multispectral image classification. IEEE Int. Conf. Geosci. Remote Sens. Symp. IGARSS 2006, 2145–2148 (2006)Google Scholar
  32. 32.
    Khelifi, R., Adel, M., Bourennane, S.: Segmentation of multispectral images based on band selection by including texture and mutual information. Biomed. Signal Process. Control 20, 16–23 (2015)CrossRefGoogle Scholar
  33. 33.
    Ledoux, A., Richard, N., Capelle-Laizé, A.S., Deborah, H., Fernandez-Maloigne, C.: Toward a full-band texture features for spectral images. IEEE Int. Conf. Image Process. (ICIP) 2014, 708–712 (2014)Google Scholar
  34. 34.
    Deborah, H., Richard, N., Hardeberg, J.Y.: On the quality evaluation of spectral image processing algorithms. In: Tenth International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), 2014, pp. 133–140 (2014)Google Scholar
  35. 35.
    Deborah, H., Richard, N., Hardeberg, J.Y.: Spectral ordering assessment using spectral median filters. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Springer, pp. 387–397 (2015)Google Scholar
  36. 36.
    Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 254–266 (1996)CrossRefGoogle Scholar
  37. 37.
    Flusser, J., Suk, T., Boldyš, J., Zitová, B.: Projection operators and moment invariants to image blurring. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 786–802 (2015)CrossRefGoogle Scholar
  38. 38.
    Flusser, J., Suk, T., Zitova, B.: 2D and 3D Image Analysis by Moments. Wiley, New York (2016)CrossRefMATHGoogle Scholar
  39. 39.
    Mukundan, R., Ramakrishnan, K.R.: Moment Functions in Image Analysis: Theory and Applications. World Scientific, Singapore (1998)CrossRefMATHGoogle Scholar
  40. 40.
    Papakostas, G.A.: Moments and moment invariants: theory and applications. Science Gate 1, 3–32 (2014)Google Scholar
  41. 41.
    Bigun, J., du Buf, J.M.H.: N-folded symmetries by complex moments in Gabor space and their application to unsupervised texture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 80–87 (1994)CrossRefGoogle Scholar
  42. 42.
    Super, B.J., Bovik, A.C.: Shape from texture using local spectral moments. IEEE Trans. Pattern Anal. Mach. Intell. 17(4), 333–343 (1995)CrossRefGoogle Scholar
  43. 43.
    Mäenpää, T., Pietikäinen, M., Viertola, J.: Separating color and pattern information for color texture discrimination. In: Proceedings of 16th International Conference on Pattern Recognition, 2002, pp. 668–671 (2002)Google Scholar
  44. 44.
    Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)CrossRefGoogle Scholar
  45. 45.
    Liu, L., Lao, S., Fieguth, P.W., Guo, Y., Wang, X., Pietikäinen, M.: Median robust extended local binary pattern for texture classification. IEEE Trans. Image Process. 25(3), 1368–1381 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Porebski, A., Vandenbroucke, N., Macaire, L., Hamad, D.: A new benchmark image test suite for evaluating colour texture classification schemes. Multimed. Tools Appl. 70(1), 543–556 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of ComputingUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations