Machine Vision and Applications

, Volume 28, Issue 8, pp 937–952 | Cite as

Towards an efficient 3D model estimation methodology for aerial and ground images

  • Guilherme PotjeEmail author
  • Gabriel Resende
  • Mario Campos
  • Erickson R. Nascimento
Original Paper


In this paper we propose an efficient approach for automatic generation of 3D models from images based on structure from motion (SfM) and multi-view stereo reconstruction techniques. Current imaging devices are capable of producing high-definition images and are an ubiquitous payload of unmanned aerial vehicles. However, the time required to obtain models quickly becomes prohibitive as the number of images increases. In our approach, which is image-based only, we use meta-data information such as GPS, keypoint filtering and multiple local bundle adjustment refinement instead of global optimization in a novel scheme to speed up the incremental SfM process. The results from real data show that our approach outperforms the time performance of current strategies while maintaining the quality of the resulting model. Experiments with an unorganized set of images were also conducted, and the results show that our method is able to efficiently estimate 3D models from collections of images with reduced re-projection error.


Digital elevation model Multi-view stereo Large-scale 3D reconstruction Structure-from-motion 



We thank the anonymous reviewers for their comments and insightful observations. This work is supported by CAPES, CNPq, FAPEMIG, and Vale Institute of Technology (ITV).


  1. 1.
    Agarwal, S., Mierle, K., et al.: Ceres solver. (2015)
  2. 2.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: ICCV, pp. 72–79 (2009)Google Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). CVIU 110(3), 346–359 (2008)Google Scholar
  4. 4.
    Bosse, M., Zlot, R., Flick, P.: Zebedee: design of a spring-mounted 3-d range sensor with application to mobile mapping. IEEE Trans. Rob. 28(5), 1104–1119 (2012)CrossRefGoogle Scholar
  5. 5.
    Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR, pp. 3001–3008 (2011). doi: 10.1109/CVPR.2011.5995626
  6. 6.
    Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular SLAM. In: ECCV (2014)Google Scholar
  7. 7.
    Frahm, J.M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.H., Dunn, E., Clipp, B., Lazebnik, S., et al.: Building rome on a cloudless day. In: ECCV, pp. 368–381 (2010)Google Scholar
  8. 8.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. PAMI 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  9. 9.
    Hartley, R.I.: In defense of the eight-point algorithm. PAMI 19(6), 580–593 (1997). doi: 10.1109/34.601246 CrossRefGoogle Scholar
  10. 10.
    James, M.R., Robson, S.: Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J. Geophys. Res. Earth Surf. 117(F3) (2012)Google Scholar
  11. 11.
    Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.S.: Pushing the envelope of modern methods for bundle adjustment. PAMI 34(8), 1605–1617 (2012). doi: 10.1109/TPAMI.2011.256 CrossRefGoogle Scholar
  12. 12.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on geometry processing, vol. 7 (2006)Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004). doi: 10.1023/B:VISI.0000029664.99615.94 CrossRefGoogle Scholar
  14. 14.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). doi: 10.1137/0111030 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Mitra, K., Chellappa, R.: A scalable projective bundle adjustment algorithm using the l infinity norm. In: Sixth Indian conference on computer vision, graphics and image processing, 2008. ICVGIP’08. pp. 79–86. IEEE (2008)Google Scholar
  16. 16.
    Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a contrario model estimation. In: ACCV, pp. 257–270 (2012)Google Scholar
  17. 17.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: In VISAPP international conference on computer vision theory and applications, pp. 331–340 (2009)Google Scholar
  18. 18.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR, vol. 2, pp. 2161–2168. IEEE (2006)Google Scholar
  19. 19.
    Ozyesil, O., Singer, A.: Robust camera location estimation by convex programming. In: Proceedings of the IEEE CVPR, pp. 2674–2683 (2015)Google Scholar
  20. 20.
    Pollefeys, M., Nistér, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.J., Merrell, P., et al.: Detailed real-time urban 3d reconstruction from video. IJCV 78(2–3), 143–167 (2008). doi: 10.1007/s11263-007-0086-4 CrossRefGoogle Scholar
  21. 21.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV. Barcelona (2011)Google Scholar
  22. 22.
    Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE CVPR, pp. 4104–4113 (2016)Google Scholar
  23. 23.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. IJCV 80(2), 189–210 (2008). doi: 10.1007/s11263-007-0107-3 CrossRefGoogle Scholar
  24. 24.
    Strecha, C., Pylvanainen, T., Fua, P.: Dynamic and scalable large scale image reconstruction. In: CVPR, pp. 406–413. IEEE Computer Society (2010)Google Scholar
  25. 25.
    Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Proceedings of the IEEE CVPR, pp. 1–8 (2008)Google Scholar
  26. 26.
    Teza, G., Pesci, A., Ninfo, A.: Morphological analysis for architectural applications: comparison between laser scanning and structure-from-motion photogrammetry. J. Surv. Eng. p. 04016004 (2016). doi: 10.1061/(ASCE)SU.1943-5428.0000172
  27. 27.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. IJCV 9(2), 137–154 (1992). doi: 10.1007/BF00129684 CrossRefGoogle Scholar
  28. 28.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. PAMI 13(4), 376–380 (1991). doi: 10.1109/34.88573 CrossRefGoogle Scholar
  29. 29.
    Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.: ’Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012)CrossRefGoogle Scholar
  30. 30.
    Wilson, K., Snavely, N.: Robust global translations with 1dsfm. In: ECCV, pp. 61–75. Springer (2014)Google Scholar
  31. 31.
    Wu, C.: Towards linear-time incremental structure from motion. In: 3DV, pp. 127–134 (2013)Google Scholar
  32. 32.
    Zhu, S., Fang, T., Xiao, J., Quan, L.: Local readjustment for high-resolution 3D reconstruction. In: Proceedings of the IEEE CVPR, pp. 3938–3945 (2014). doi: 10.1109/CVPR.2014.503

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations