Machine Vision and Applications

, Volume 28, Issue 8, pp 917–936 | Cite as

Bright spot regions segmentation and classification for specular highlights detection in colonoscopy videos

  • F. Javier Sánchez
  • Jorge BernalEmail author
  • Cristina Sánchez-Montes
  • Cristina Rodríguez de Miguel
  • Gloria Fernández-Esparrach
Original Paper


A novel specular highlights detection method in colonoscopy videos is presented. The method is based on a model of appearance defining specular highlights as bright spots which are highly contrasted with respect to adjacent regions. Our approach proposes two stages: segmentation and then classification of bright spot regions. The former defines a set of candidate regions obtained through a region growing process with local maxima as initial region seeds. This process creates a tree structure which keeps track, at each growing iteration, of the region frontier contrast; final regions provided depend on restrictions over contrast value. Non-specular regions are filtered through a classification stage performed by a linear SVM classifier using model-based features from each region. We introduce a new validation database with more than 25, 000 regions along with their corresponding pixel-wise annotations. We perform a comparative study against other approaches. Results show that our method is superior to other approaches, with our segmented regions being closer to actual specular regions in the image. Finally, we also present how our methodology can also be used to obtain an accurate prediction of polyp histology.


Specular highlights Bright spot regions segmentation Region classification Colonoscopy 



This work was supported by the Spanish Government through the funded project iVENDIS (DPI2015-65286-R), by the FSEED, by the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya, 2014-SGR-1470 and 2014-SGR-135 and by CERCA Programme / Generalitat de Catalunya.


  1. 1.
    Alsaleh, S.M., Aviles, A.I., Sobrevilla, P., Casals, A., Hahn, J.K.: Adaptive segmentation and mask-specific sobolev inpainting of specular highlights for endoscopic images. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, pp. 1196–1199. IEEE (2016)Google Scholar
  2. 2.
    Angelopoulou, E.: Specular highlight detection based on the fresnel reflection coefficient. In: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp. 1–8. IEEE (2007)Google Scholar
  3. 3.
    Arnold, M., Ghosh, A., Ameling, S., Lacey, G.: Automatic segmentation and inpainting of specular highlights for endoscopic imaging. J. Image Video Process. 2010, 9 (2010)Google Scholar
  4. 4.
    Asundi, A., Wensen, Z.: Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill. Appl. Opt. 37(23), 5416–5420 (1998)CrossRefGoogle Scholar
  5. 5.
    Bernal, J., Gil, D., Sánchez, C., Sánchez, F.J.: Discarding non informative regions for efficient colonoscopy image analysis. In: International Workshop on Computer-Assisted and Robotic Endoscopy, pp. 1–10. Springer (2014)Google Scholar
  6. 6.
    Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)CrossRefGoogle Scholar
  7. 7.
    Bernal, J., Sánchez, F.J., Rodríguez de Miguel, C., Fernández-Esparrach, G.: Screening for Colorectal Cancer with Colonoscopy, vol. 1, chap. In: Building up the Future of Colonoscopy—A Synergy between Clinicians and Computer Scientists, pp. 109–141. InTech (2015)Google Scholar
  8. 8.
    Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recognit. 45(9), 3166–3182 (2012)CrossRefGoogle Scholar
  9. 9.
    Bernal, J., Sánchez, J., Vilarino, F.: Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 7350–7354. IEEE (2013)Google Scholar
  10. 10.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)zbMATHGoogle Scholar
  11. 11.
    Fernández-Esparrach, G., Bernal, J., López-Cerón, M., Córdova, H., Sánchez-Montes, C., de Miguel, C.R., Sánchez, F.J.: Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy 48(09), 837–842 (2016)Google Scholar
  12. 12.
    Hafner, M., Brunauer, L., Payer, H., Resch, R., Gangl, A., Uhl, A., Wrba, F., Vécsei, A.: Computer-aided classification of zoom-endoscopical images using fourier filters. IEEE Trans. Inf. Technol. Biomed. 14(4), 958–970 (2010)CrossRefGoogle Scholar
  13. 13.
    Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Int. Syst. Appl. 13(4), 18–28 (1998)CrossRefGoogle Scholar
  14. 14.
    Iakovidis, D.K., Koulaouzidis, A.: Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12(3), 172–186 (2015)CrossRefGoogle Scholar
  15. 15.
    Kudo, S.E., Wakamura, K., Ikehara, N., Mori, Y., Inoue, H., Hamatani, S.: Diagnosis of colorectal lesions with a novel endocytoscopic classification–a pilot study. Endoscopy 43(10), 869–875 (2011)CrossRefGoogle Scholar
  16. 16.
    Linker, R., Kelman, E.: Apple detection in nighttime tree images using the geometry of light patches around highlights. Comput. Electr. Agric. 114, 154–162 (2015)CrossRefGoogle Scholar
  17. 17.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  18. 18.
    Meziou, L., Histace, A., Precioso, F.: Alpha-divergence maximization for statistical region-based active contour segmentation with non-parametric pdf estimations. In: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pp. 861–864. IEEE (2012)Google Scholar
  19. 19.
    Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. Comput. Vis. ECCV 2008, 183–196 (2008)Google Scholar
  20. 20.
    Núñez, J.M., Bernal, J., Ferrer, M., Vilariño, F.: Impact of keypoint detection on graph-based characterization of blood vessels in colonoscopy videos. In: International Workshop on Computer-Assisted and Robotic Endoscopy, pp. 22–33. Springer (2014)Google Scholar
  21. 21.
    Shao, F., Jiang, G., Yu, M., Ho, Y.S.: Highlight-detection-based color correction method for multiview images. ETRI J. 31(4), 448–450 (2009)CrossRefGoogle Scholar
  22. 22.
    Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9(2), 283–293 (2014)CrossRefGoogle Scholar
  23. 23.
    Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imag. 35(2), 630–644 (2016)CrossRefGoogle Scholar
  24. 24.
    Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 178–193 (2005)CrossRefGoogle Scholar
  25. 25.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993)CrossRefGoogle Scholar
  26. 26.
    Xu, S.C., Ye, X., Wu, Y., Zhang, S.: Highlight detection and removal based on chromaticity. In: Image Analysis and Recognition, pp. 199–206. Springer (2005)Google Scholar
  27. 27.
    Yang, Q., Wang, S., Ahuja, N.: Real-time specular highlight removal using bilateral filtering. Comput. Vis. ECCV 2010, 87–100 (2010)Google Scholar
  28. 28.
    Yoon, K., Kweon, I.: Correspondence search in the presence of specular highlights using specular-free two-band images. Comput. Vis. ACCV 2006, 761–770 (2006)Google Scholar
  29. 29.
    Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., Kikinis, R.: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports. Acad. Radiol. 11(2), 178–189 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Computer Vision Center and Computer Science Department at Universitat Autonoma de BarcelonaBarcelonaSpain
  2. 2.Endoscopy Unit, Gastroenterology Service, CIBERHED, IDIBAPS, Hospital ClinicUniversidad de BarcelonaBarcelonaSpain

Personalised recommendations