Advertisement

Machine Vision and Applications

, Volume 28, Issue 3–4, pp 421–430 | Cite as

A distributed approach for real-time multi-camera multiple object tracking

  • Fabio Previtali
  • Domenico D. Bloisi
  • Luca Iocchi
Original Paper
  • 581 Downloads

Abstract

Estimating the positions of a set of moving objects captured from a network of cameras is still an open problem in Computer Vision. In this paper, a distributed and real-time approach for tracking multiple objects on multiple cameras is presented. A quantitative comparison with six state-of-the-art methods has been carried out on the publicly available PETS 2009 data set, demonstrating the effectiveness of the algorithm. Moreover, the proposed method has been tested also on a multi-camera soccer data set, showing its data fusion capabilities.

Keywords

Distributed multiple object tracking Real-time data processing Distributed data association 

Supplementary material

138_2017_827_MOESM1_ESM.mp4 (14.8 mb)
Supplementary material 1 (mp4 15142 KB)

References

  1. 1.
    Dragon, R., Fenzi, M., Siberski, W., Rosenhahn, B., Ostermann, J.: Towards feature-based situation assessment for airport apron video surveillance. In: Outdoor and Large-Scale Real-World Scene Analysis, pp. 110–130. Springer, Berlin, Heidelberg (2012)Google Scholar
  2. 2.
    Welsh, B.C., Farrington, D.P., Taheri, S.A.: Effectiveness and social costs of public area surveillance for crime prevention. Ann. Rev. Law Soc. Sci. 11(1), 111–130 (2015)CrossRefGoogle Scholar
  3. 3.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)CrossRefGoogle Scholar
  4. 4.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. Trans. Syst. Man Cybern. Part C Appl. Rev. 34(3), 334–352 (2004)CrossRefGoogle Scholar
  5. 5.
    Rosencrantz, M., Gordon, G., Thrun, S.: Decentralized sensor fusion with distributed particle filters. In: Conference on Uncertainty in Artificial Intelligence, pp. 493–500 (2002)Google Scholar
  6. 6.
    Sheng, X., Hu, Y., Ramanathan, P.: Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network. In: International Symposium on Information Processing in Sensor Networks, p. 24 (2005)Google Scholar
  7. 7.
    Ellis, A., Shahrokni, A., Ferryman, J. M.: PETS2009 and winter-pets 2009 results: a combined evaluation. In: International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–8 (2009)Google Scholar
  8. 8.
    D’Orazio, T., Leo, M., Mosca, N., Spagnolo, P., Mazzeo, P.L.: A semi-automatic system for ground truth generation of soccer video sequences. In: International Conference on Advanced Video and Signal Based Surveillance, pp. 559–564 (2009)Google Scholar
  9. 9.
    Andriyenko, A., Roth, S., Schindler, K.: An analytical formulation of global occlusion reasoning for multi target tracking. In: International Conference on Computer Vision Workshops, pp. 1839–1846 (2011)Google Scholar
  10. 10.
    Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust multiperson tracking from a mobile platform. Trans. Pattern Anal. Mach. Intell. 31(10), 1831–1846 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  12. 12.
    Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)CrossRefGoogle Scholar
  13. 13.
    Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.: Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In: International Conference on Computer Vision Workshops, pp. 120–127 (2011)Google Scholar
  14. 14.
    Henriques, J.F., Caseiro, R., Batista, J.: Globally optimal solution to multi-object tracking with merged measurements. In: International Conference on Computer Vision, pp. 2470–2477 (2011)Google Scholar
  15. 15.
    Makarenko, A., Durrant-Whyte, H.: Decentralized data fusion and control in active sensor networks. International Conference on Information Fusion, vol. 1, 479–486 (2004)Google Scholar
  16. 16.
    Black, J., Ellis, T., Rosin, P.: Multi view image surveillance and tracking. In: International Workshop on Motion and Video Computing, pp. 169–174 (2002)Google Scholar
  17. 17.
    Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. Trans. Pattern Anal. Mach. Intell. 33(9), 1820–1833 (2011)CrossRefGoogle Scholar
  18. 18.
    Yang, J., Shi, Z., Vela, P., Teizer, J.: Probabilistic multiple people tracking through complex situations. In: International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 79–86 (2009)Google Scholar
  19. 19.
    Bae, S., Yoon, K.: Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In: Conference on Computer Vision and Pattern Recognition, pp. 1218–1225 (2014)Google Scholar
  20. 20.
    Gu, D.: Distributed particle filter for target tracking. In: International Conference on Robotics and Automation, pp. 3856–3861 (2007)Google Scholar
  21. 21.
    Ong, L., Bailey, T., Durrant-Whyte, H., Upcroft, B.: Decentralised particle filtering for multiple target tracking in wireless sensor networks. In: International Conference on Information Fusion, pp. 1–8 (2008)Google Scholar
  22. 22.
    Wu, Y., Tong, X., Zhang, Y., Lu, H.: Boosted interactively distributed particle filter for automatic multi-object tracking. In: International Conference on Image Processing, pp. 1844–1847 (2008)Google Scholar
  23. 23.
    Oreshkin, B.N., Coates, M.J.: Asynchronous distributed particle filter via decentralized evaluation of Gaussian products. In: International Conference on Information Fusion, pp. 1–8 (2010)Google Scholar
  24. 24.
    Bloisi, D.D., Pennisi, A., Iocchi, L.: Background modeling in the maritime domain. Mach. Vis. Appl. 25(5), 1257–1269 (2014)CrossRefGoogle Scholar
  25. 25.
    Bloisi, D.D., Pennisi, A., Iocchi, L.: Parallel multi-modal background modeling. Pattern Recognit. Lett. (2016). doi: 10.1016/j.patrec.2016.10.016
  26. 26.
    Dollar, P., Belongie, S., Perona, P.: The fastest pedestrian detector in the west. In: British Machine Vision Conference, pp. 68.1–68.11 (2010)Google Scholar
  27. 27.
    Del Moral, P.: Non-linear filtering: interacting particle resolution. Markov Process. Relat. Fields 2(4), 555–581 (1996)MATHGoogle Scholar
  28. 28.
    Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, New York (2005)Google Scholar
  29. 29.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (2003)CrossRefMATHGoogle Scholar
  30. 30.
    Heyer, L.J., Kruglyak, S., Yooseph, S.: Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9(11), 1106–1115 (1999)CrossRefGoogle Scholar
  31. 31.
    Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. Trans. Pattern Anal. Mach. Intell. 31(2), 319–336 (2009)CrossRefGoogle Scholar
  32. 32.
    Zhang, J., Presti, L.L., Sclaroff, S.: Online multi-person tracking by tracker hierarchy, In: International Conference on Advanced Video and Signal Based Surveillance, pp. 379–385 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Computer, Control, and Management Engineering “A. Ruberti”Sapienza University of RomeRomeItaly

Personalised recommendations