Skip to main content
Log in

Local motion deblurring using an effective image prior based on both the first- and second-order gradients

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Local motion deblurring is a highly challenging problem as both the blurred region and the blur kernel are unknown. Most existing methods for local deblurring require a specialized hardware, an alpha matte, or user annotation of the blurred region. In this paper, an automatic method is proposed for local motion deblurring in which a segmentation step is performed to extract the blurred region. Then, for blind deblurring, i.e., simultaneously estimating both the blur kernel and the latent image, an optimization problem in the form of maximum-a-posteriori (MAP) is introduced. An effective image prior is used in the MAP based on both the first- and second-order gradients of the image. This prior assists to well reconstruct salient edges, providing reliable edge information for kernel estimation, in the intermediate latent image. We examined the proposed method for both global and local deblurring. The efficiency of the proposed method for global deblurring is demonstrated by performing several quantitative and qualitative comparisons with the state-of-the-art methods, on both a benchmark image dataset and real-world motion blurred images. In addition, in order to demonstrate the efficiency in local motion deblurring, the proposed method is examined to deblur some real-world locally linear motion blurred images. The qualitative results show the efficiency of the proposed method for local deblurring at various blur levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A pixon is a region that is made up of a set of connected pixels with associated properties such as color, intensity or texture.

References

  1. Cho, S., Lee, S.: Fast motion deblurring. In: ACM Transactions on Graphics (TOG), vol. 28. ACM, New York (2009)

  2. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. (TOG) 25(3), 787–794 (2006)

    Article  Google Scholar 

  3. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on IEEE, 2011, pp. 233–240

  4. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In: ACM Transactions on Graphics (TOG), vol. 27, ACM, New York (2008)

  5. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: 2013 IEEE International Conference on Computational Photography (ICCP), pp. 1–8 (2013)

  6. Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. Springer, New York (2010)

    Book  Google Scholar 

  7. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

  8. Joshi, N., Szeliski, R., Kriegman, D.J.: PSF estimation using sharp edge prediction. In: Computer Vision and Pattern Recognition, 2008. IEEE Conference on CVPR 2008, pp. 1–8 (2008)

  9. Cho, T.S., Paris, S., Horn, B.K., Freeman, W.T.: Blur kernel estimation using the radon transform. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on IEEE, pp. 241–248 (2011)

  10. Pan, J., Liu, R., Su, Z., Liu, G.: Motion blur kernel estimation via salient edges and low rank prior. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), IEEE, pp. 1–6 (2014)

  11. Pan, J., Liu, R., Su, Z., Gu, X.: Kernel estimation from salient structure for robust motion deblurring. Sign. Process. Image Commun. 28(9), 1156–1170 (2013)

    Article  Google Scholar 

  12. Pan, J., Su, Z.: Fast-regularized kernel estimation for robust motion deblurring. IEEE Sign. Process. Lett. 20(9), 841–844 (2013)

    Article  Google Scholar 

  13. Cai, J.-F., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: Computer Vision and Pattern Recognition, 2009. IEEE Conference on CVPR 2009, IEEE, pp. 104–111

  14. Chen, J., Yuan, L., Tang, C.-K., Quan, L.: Robust dual motion deblurring. In: Computer Vision and Pattern Recognition, 2008. IEEE Conference on CVPR 2008, IEEE, pp. 1–8

  15. H. Hong, I. K. Park, Single image motion deblurring using anisotropic regularization. In: 2010 17th IEEE International Conference on Image Processing (ICIP), IEEE, pp. 1149–1152

  16. Li, W., Zhang, J., Dai, Q.-H.: Robust blind motion deblurring using near-infrared flash image. J. Vis. Commun. Image Represent. 24(8), 1394–1413 (2013)

    Article  Google Scholar 

  17. Dai, S., Wu, Y.: Removing partial blur in a single image. In: Computer Vision and Pattern Recognition, 2009. IEEE Conference on CVPR 2009, IEEE, pp. 2544–2551

  18. Martinello, M., Favaro, P.: Fragmented aperture imaging for motion and defocus deblurring. In: 2011 18th IEEE International Conference on Image Processing (ICIP), IEEE, pp. 3413–3416

  19. Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, 2006, pp. 841–848

  20. Couzinie-Devy, F., Sun, J., Alahari, K., Ponce, J.: Learning to estimate and remove non-uniform image blur. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1075–1082

  21. Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans. Graph. (TOG) 25(3), 795–804 (2006)

    Article  Google Scholar 

  22. Levin, A., Fergus, R., Durand, F., Freeman, W.T. : Image and depth from a conventional camera with a coded aperture. In: ACM Transactions on Graphics (TOG), Vol. 26, p. 70, ACM (2007)

  23. Tai, Y.-W., Kong, N., Lin, S., Shin, S.Y.: Coded exposure imaging for projective motion deblurring. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 2408–2415

  24. Tai, Y.-W., Du, H., Brown, M.S., Lin, S.: Correction of spatially varying image and video motion blur using a hybrid camera. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1012–1028 (2010)

    Article  Google Scholar 

  25. Shan, Q., Xiong, W., Jia, J.:Rotational motion deblurring of a rigid object from a single image. In: ICCV 2007. IEEE 11th International Conference on Computer Vision, 2007, IEEE, pp. 1–8

  26. Kim, T.H., Lee, K.M.: Segmentation-free dynamic scene deblurring. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 2766–2773

  27. Kim, T., Ahn, B., Lee, K.: Dynamic scene deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3160–3167 (2013)

  28. Hyun Kim, T., Mu Lee, K.: Generalized video deblurring for dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5426–5434 (2015)

  29. Javaran, T.A., Hassanpour, H., Abolghasemi, V.: A noise-immune no-reference metric for estimating blurriness value of an image. Signal Process Image Commun (2016). doi:10.1016/j.image.2016.06.009

    Google Scholar 

  30. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)

    Article  Google Scholar 

  31. Pan, J., Hu, Z., Su, Z., Lee, H.-Y., Yang, M.-H.: Soft-segmentation guided object motion deblurring. In: Computer Vision and Pattern Recognition, 2016. IEEE Conference on CVPR 2016

  32. Javaran, T. A., Hassanpour, H., Abolghasemi, V.: Automatic estimation and segmentation of partial blur in natural images. Vis. Comput. 33, 151 (2017). doi:10.1007/s00371-015-1166-z

  33. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011)

    Article  Google Scholar 

  34. Joshi, N., Zitnick, C. L., Szeliski, R., Kriegman, D. J. Image deblurring and denoising using color priors. In: Computer Vision and Pattern Recognition, 2009. IEEE Conference on CVPR 2009, IEEE, pp. 1550–1557 (2009)

  35. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990)

    Article  MATH  Google Scholar 

  36. S. Roth, M. J. Black, Fields of experts: A framework for learning image priors. In: Computer Vision and Pattern Recognition, 2005. IEEE Computer Society Conference on CVPR 2005, vol. 2, IEEE, pp. 860–867 (2005)

  37. Y. Weiss, W. T. Freeman, What makes a good model of natural images?. In: Computer Vision and Pattern Recognition, 2007. IEEE Conference on CVPR’07, IEEE, pp. 1–8 (2007)

  38. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Deconvolution Using Natural Image Priors. Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory (2007)

    Google Scholar 

  39. A. Levin, Y. Weiss, F. Durand, W. T. Freeman, Understanding and evaluating blind deconvolution algorithms. In: Computer Vision and Pattern Recognition, 2009. IEEE Conference on CVPR 2009, IEEE, pp. 1964–1971 (2009)

  40. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 3, 367–383 (1992)

    Article  Google Scholar 

  41. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)

    Article  Google Scholar 

  42. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imag. Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Krishnan, R. Fergus, Fast image deconvolution using hyper-laplacian priors. In: Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)

  44. Javaran, T.A., Hassanpour, H., Abolghasemi, V.: Non-blind deconvolution for image deblurring using a regularization based on re-blurring process. Comput. Vis. Image Underst. 154, 16–34 (2017)

    Article  Google Scholar 

  45. Shao, W.-Z., Li, H.-B., Elad, M.: Bi-l 0-l 2-norm regularization for blind motion deblurring. J. Vis. Commun. Image Rep. 33, 42–59 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiebeh Askari Javaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari Javaran, T., Hassanpour, H. & Abolghasemi, V. Local motion deblurring using an effective image prior based on both the first- and second-order gradients. Machine Vision and Applications 28, 431–444 (2017). https://doi.org/10.1007/s00138-017-0824-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0824-8

Keywords

Navigation