Machine Vision and Applications

, Volume 28, Issue 3–4, pp 313–326 | Cite as

Epipolar geometry for prism-based single-lens stereovision

  • Xiaoyu Cui
  • Heyu Fan
  • Hongsheng Chen
  • Shuo Chen
  • Yue Zhao
  • Kahbin Lim
Original Paper


In order to simplify the design and implementation of a stereo vision system, prism has been used to capture stereo images with a single camera. This kind of system not only provides advantages over traditional two-camera stereo, but also reduces the complexity and cost of acquiring stereoscopic image. This paper investigated the characteristics of epipolar geometry for a single-lens prism-based stereovision. The prism was considered as a single optical lens. By analyzing each plane individually and then combining them together, an affine transformation matrix which can express the relationship between an object point and its image was derived. Then, the homography between object point and its image was established. Finally, the epipolar geometry as well as the epipolar rectification method was proposed. Experimental results verify that rectification of the image pair based on our proposed model can achieve better performance with much less geometric distortion.


Stereovision Prism Epipolar geometry Stereo rectification 



The authors are grateful for the financial support from the National Natural Science Foundation of China (61501101, 61605025), the General Program of the education Department of Liaoning Province (L2014086) and the Science Commonweal Foundation of Liaoning Province (2015005007).


  1. 1.
    Zhang, Z.Y.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27(2), 161–195 (1998)CrossRefGoogle Scholar
  2. 2.
    Kumar, S., Micheloni, C., Piciarelli, C.: Stereo rectification of uncalibrated and heterogeneous images. Pattern Recognit. Lett. 31(11), 1445–1452 (2010)CrossRefGoogle Scholar
  3. 3.
    Wan, D.R., Zhou, J.: Self-calibration of spherical rectification for a PTZ-stereo system. Image Vis. Comput. 28(3), 367–375 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhao, M.J., Lim, K.B., Kee, W.L.: Geometrical-analysis-based algorithm for stereo matching of single-lens binocular and multi-ocular stereovision system. J. Electron. Sci. Technol. 10(2), 107–112 (2012)Google Scholar
  5. 5.
    Lim, K.B., Kee, W.L., Wang, D.L.: Virtual camera calibration and stereo correspondence of single-lens bi-prism stereovision system using geometrical approach. Sig. Process.-Image Commun. 28, 1059–1071 (2013)CrossRefGoogle Scholar
  6. 6.
    Cui, X.Y., Lim, K.H., Guo, Q.Y., Wang, D.L.: Accurate geometrical optics model for single-lens stereovision system using a prism. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 29(9), 1828–1837 (2012)CrossRefGoogle Scholar
  7. 7.
    Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12(1), 16–22 (2000)CrossRefGoogle Scholar
  8. 8.
    Fusiello, A., Irsara, L.: Quasi-Euclidean epipolar rectification of uncalibrated images. Mach. Vis. Appl. 22(4), 663–670 (2011)CrossRefGoogle Scholar
  9. 9.
    Mendonca, P., Wong, K., Cipolla, R.: Epipolar geometry from profiles under circular motion. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 604–616 (2001)CrossRefGoogle Scholar
  10. 10.
    Habib, A.F., Morgan, M.F., Jeong, S.: Epipolar geometry of line cameras moving with constant velocity and attitude. ETRI J. 27(2), 172–180 (2005)CrossRefGoogle Scholar
  11. 11.
    Habib, A.F., Morgan, M.F., Jeong, S.: Analysis of epipolar geometry in linear array scanner scenes. Photogramm. Rec. 20(109), 27–47 (2005)CrossRefGoogle Scholar
  12. 12.
    Svoboda, T., Pajdla, T.: Epipolar geometry for central catadioptric cameras. Int. J. Comput. Vis. 49(1), 23–37 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Huang, H., Lee, M.T., Weng, P.K.: Epipolar geometry of catadioptric stereo systems with planar mirrors. Image Vis. Comput. 27(8), 1047–1061 (2009)CrossRefGoogle Scholar
  14. 14.
    Negahdaripour, S.: Epipolar geometry of opti-acoustic stereo imaging. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1776–1788 (2007)CrossRefGoogle Scholar
  15. 15.
    Nishimura, E., Xu, G., Tsuji, S.: Motion segmentation and correspondence using epipolar constraint. In: Proc. 1st Asian Conf. Computer Vision, pp. 199–204 (1993)Google Scholar
  16. 16.
    Kee, W.L., Lim, K.B., Tun, Z.L.: New understanding on the effects of angle and position of biprism on single-lens biprism stereovision system. J. Electron. Imaging 23(3), 033005 (2014)CrossRefGoogle Scholar
  17. 17.
    Lee, D.H., Kweon, I.: A novel stereo camera system by a biprism. IEEE Trans. Robot. Autom. 16(5), 528–541 (2000)CrossRefGoogle Scholar
  18. 18.
    Lim, K.B., Xiao, Y.: Virtual stereovision system: new understanding on single-lens stereovision using a biprism. J. Electron. Imaging 14(4), 41–52 (2005)CrossRefGoogle Scholar
  19. 19.
    Chen, C.Y., Yang, T.T., Sun, W.S.: Optics system design applying a micro-prism array of a single lens stereo image pair. Opt. Express 16(20), 15495–15505 (2008)CrossRefGoogle Scholar
  20. 20.
    Sun, W.S., Tien, C.L., Chen, C.Y.: Single-lens camera based on a pyramid prism array to capture four images. Opt. Rev. 20(2), 145–152 (2013)CrossRefGoogle Scholar
  21. 21.
    Genovese, K., Casaletto, L., Rayas, J.A., Flores, V., Martinez, A.: Stereo-digital image correlation (DIC) measurements with a single camera using a biprism. Opt. Lasers Eng. 51(3), 278–285 (2013)CrossRefGoogle Scholar
  22. 22.
    Maeda, V., Miyazaki, D., Mukai, T.: Volumetric display using a rotating prism sheet as an optical image scanner. Appl. Opt. 52(1), 182–187 (2013)CrossRefGoogle Scholar
  23. 23.
    Cui, X.Y., Lim, K.B., Zhao, Y.: Single-lens stereovision system using a prism: position estimation of a multi-ocular prism. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 31(5), 1074–1082 (2014)CrossRefGoogle Scholar
  24. 24.
    Wu, L.F., Zhu, J.G., Xie, H.M.: A modified virtual point model of the 3D DIC technique using a single camera and a bi-prism. Meas. Sci. Technol. 25(11), 115008(1–14) (2014)CrossRefGoogle Scholar
  25. 25.
    Wang, D.L., Lim, K.B., Kee, W.L.: Geometrical approach for rectification of single-lens stereovision system with a triprism. Mach. Vis. Appl. 24, 821–833 (2013)CrossRefGoogle Scholar
  26. 26.
    Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaoyu Cui
    • 1
  • Heyu Fan
    • 1
  • Hongsheng Chen
    • 1
  • Shuo Chen
    • 1
  • Yue Zhao
    • 1
  • Kahbin Lim
    • 2
  1. 1.Department of SINO-DUTCH Biomedical and Information EngineeringNortheastern UniversityShenyangChina
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations