Advertisement

Machine Vision and Applications

, Volume 27, Issue 4, pp 559–576 | Cite as

An efficient surface registration using smartphone

  • Tomislav PribanićEmail author
  • Yago Diez
  • Ferran Roure
  • Joaquim Salvi
Original Paper

Abstract

Gathering 3D object information from the multiple spatial viewpoints typically brings up the problem of surface registration. More precisely, registration is used to fuse 3D data originally acquired from different viewpoints into a common coordinate system. This step often requires the use of relatively bulky and expensive robot arms (turntables) or presents a very challenging problem if constrained to software solutions. In this paper we present a novel surface registration method, motivated by an efficient and user-friendly implementation. Our system is inspired by the idea that three out of generally six registration parameters (degrees of freedom) can be provided in advance, at least to some degree of accuracy, by today’s smartphones. Experimental evaluations demonstrated the successful point cloud registrations of \(\sim \)10,000 points in a matter of seconds. The evaluation included comparison with state-of-the-art descriptor methods. The method’s robustness was also studied and the results using 3D data from a professional scanner showed the potential for real-world applications.

Keywords

Surface registration 3D reconstruction Structured light Stereo vision Inertial sensor Smartphone Cell phone 

References

  1. 1.
    Matabosch, C., Foı, D., Salvi, J., Batlle, E.: Registration of surfaces minimizing error propagation for a one-shot multi-slit hand-held scanner. Pattern Recognit. 41, 2055–2067 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Martins, A.F., Bessant, M., Manukyan, L., Milinkovitch, M.C.: R\(^{2}\)OBBIE-3D, a fast robotic high-resolution system for quantitative phenotyping of surface geometry and colour-texture. PLoS One 10(6), e0126740 (2015). doi: 10.1371/journal.pone.0126740 CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3D scanning of large statues. In: Siggraph 2000, Computer Graphics Proceedings, pp. 131–144. ACM Press/ACM SIGGRAPH/Addison Wesley Longman (2000)Google Scholar
  5. 5.
    Salvi, J., Matabosch, C., Fofi, D., Forest, F.: A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 25, 578–596 (2007)CrossRefGoogle Scholar
  6. 6.
    Aiger, D., Mitra, N.J.: Daniel Cohen-Or. 4-points congruent sets for robust surface registration. In: ACM SIGGRAPH, pp. 1–10 (2008)Google Scholar
  7. 7.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  8. 8.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3rd International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2011)Google Scholar
  9. 9.
    Mohammadzade, H., Hatzinakos, D.: Iterative closest normal point for 3D face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 381–397 (2013)CrossRefGoogle Scholar
  10. 10.
    Diez, Y., Martí, J., Salvi, J.: Hierarchical normal space sampling to speed up point cloud coarse matching. Pattern Recognit. Lett. 33, 2127–2213 (2012)CrossRefGoogle Scholar
  11. 11.
    Wald, I., Havran, V.: On building fast kd-trees for ray tracing, and on doing that in O(NlogN). In: IEEE Symposium on Interactive Ray Tracing, pp. 61–69 (2006)Google Scholar
  12. 12.
    Project tango. https://www.google.com/atap/projecttango/#project. Accessed Mar 2015
  13. 13.
    Structure Sensor. http://structure.io/. Accessed March 2015
  14. 14.
    Huang, Q.-X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27, 1449–1457 (2008)CrossRefGoogle Scholar
  15. 15.
    Lian, Z., et al.: A comparison of methods for non-rigid 3d shape retrieval. Pattern Recognit. 46, 449–461 (2013)CrossRefGoogle Scholar
  16. 16.
    Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discret. Comput. Geom. 3, 237–256 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chung, D.H., Yun, D., Lee, S.U.: Registration of multiple-range views using the reverse-calibration technique. Pattern Recognit. 31, 457–464 (1998)CrossRefGoogle Scholar
  18. 18.
    Santamaría, J., Cordon, O., Damas, S.: A comparative study of state-of-the-art evolutionary image registration methods for 3D modelling. Comput. Vis. Image Underst. 115, 1340–1354 (2011)CrossRefGoogle Scholar
  19. 19.
    Mian, A., Bennamoun, M., Owens, R.: On the Repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89, 348–361 (2010)CrossRefGoogle Scholar
  20. 20.
    Makadia, A., Patterson, A., Daniilidis, K.: Fully automatic registration of 3D point clouds. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. I, pp. 1297–1304 (2006)Google Scholar
  21. 21.
    Wyngaerd, J.V., Van Gool, L.: Automatic crude patch registration: toward automatic 3d model building. Comput. Vis. Image Underst. 87, 8–26 (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stamos, I., Leordeanu, M.: Automated feature-based range registration of urban scenes of large scale. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 555–561 (2003)Google Scholar
  23. 23.
    Park, S.-Y., Choi, S.-I., Kim, J., Chae, J.S.: Real-time 3D registration using GPU. Mach. Vis. Appl. 22, 837–850 (2011)CrossRefGoogle Scholar
  24. 24.
    Tanskanen, P., Kolev, K., Meier, L., Camposeco, F., Saurer, O., Pollefeys, M.: Live metric 3D reconstruction on mobile phones. In: ICCV ’13 Proceedings of the 2013 IEEE International Conference on Computer Vision, pp. 65–72Google Scholar
  25. 25.
    Nießner, M., Dai, A., Fisher, M.: Combining inertial navigation and ICP for real-time 3D surface reconstruction. Eurographics 2014, 13–16 (2014)Google Scholar
  26. 26.
    Feldmar, J., Ayache, N.: Rigid, affine and locally affine registration of free-form surfaces. Technical Report of INRIA, Sophia Antipolis (1994)Google Scholar
  27. 27.
  28. 28.
    Petković, T., Pribanić, T., Donlić, M.: The self-equalizing De Bruijn sequence for 3D profilometry. In: Proceedings of the 26th British Machine Vision Conference (BMVC 2015), September 7–10, Swansea, UK, pp. 1–11Google Scholar
  29. 29.
    Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recognit. 43, 2666–2680 (2010)CrossRefzbMATHGoogle Scholar
  30. 30.
    Pribanic, T., Mrvos, S., Salvi, J.: Efficient multiple phase shift patterns for dense 3D acquisition in structured light scanning. Image Vis. Comput. 28, 1255–1266 (2010)CrossRefGoogle Scholar
  31. 31.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19, 127–153 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    http://meshlab.sourceforge.net/. Accessed March 2015
  33. 33.
    Pedley, M.: Tilt sensing using a three-axis accelerometer, AN3461, Freescale SemiCondutor, pp. 1–22 (2013)Google Scholar
  34. 34.
    Ozyagcilar, T.: Implementing a tilt-compensated eCompass using accelerometer and magnetometer sensors. AN4248, Freescale SemiCondutor, pp. 1–21 (2008)Google Scholar
  35. 35.
    MTi and MTx User Manual and Technical Documentation. http://www.xsens.com/. Accessed March 2015
  36. 36.
    Gotcha 3DAngel sculpture. http://www.4ddynamics.com/examples/. Accessed March 2015
  37. 37.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)CrossRefGoogle Scholar
  38. 38.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Computer Vision—ECCV 2010, pp. 356–369. Springer, Berlin (2010)Google Scholar
  39. 39.
  40. 40.
    Shirmohammadi, B., Taylor, C.J.: Self-localizing smart camera networks. ACM Trans. Embed. Comput. Syst. 8, 1–26 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tomislav Pribanić
    • 1
    Email author
  • Yago Diez
    • 2
  • Ferran Roure
    • 3
  • Joaquim Salvi
    • 3
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.GSIS Tokuyama LaboratoryTohoku UniversitySendaiJapan
  3. 3.Institute of Computer Vision and RoboticsUniversity of GironaGironaSpain

Personalised recommendations