Machine Vision and Applications

, Volume 27, Issue 5, pp 637–646 | Cite as

Automated estimation of tiller number in wheat by ribbon detection

  • R. D. Boyle
  • F. M. K. Corke
  • J. H. Doonan
Special Issue Paper


The advent of high-throughput phenotyping installations signals a need for plant biology to use pattern analysis and recognition techniques, especially when analysis is done via digital images. Such installations also provide an opportunity to computer vision. We describe one such application at the UK National Plant Phenomics Centre, in which historically measurements have been made in a labour-intensive manual manner. We develop an estimator of tiller number in growing wheat which, when exploiting per-day averaging, temporal interpolation and dynamic programming, delivers measurements of finer-grain and no less accuracy than manually, and provides observations on plant treatments hitherto difficult or impossible to obtain. The approach developed lends itself to reuse for any similar imaging setup, and plants with tillering characteristics similar to wheat. We consider the work a useful exemplar for co-operation between biologists and computer scientists in such installations.


Small grain cereals Branching  Plant development  Computer vision 



This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC Grant ref numbers BB/J004405/1 and BB/J004464/1), the European Union (EPPN, an Integrating Activity, Research Infrastructure project funded by the European Union under FP7 Capacities Programme. Grant Agreement No. 284443) and the Biosciences, Environment and Agriculture Alliance (BEAA), a strategic partnership between Aberystwyth and Bangor universities. We are grateful to NPPC staff for technical support and constructive discussions.


  1. 1.
    Australian Plant Phenomics Facility. (2014)
  2. 2.
    Borras-Gelonch, G., Rebetzke, G., Richards, R., Romagosa, I.: Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum l.) and relationships to leaf appearance, tillering, and dry matter accumulation. J. Exp. Bot. 63(1), 69–89 (2012)CrossRefGoogle Scholar
  3. 3.
    Boyle, R., Corke, F., Howarth, C.: Image-based estimation of oat panicle development using local texture patterns. Funct. Plant Biol. 42(5), 433–443 (2015). doi: 10.1071/FP14056 CrossRefGoogle Scholar
  4. 4.
    Campillo, C., Garcia, M., Daza, C., Prieto, M.: Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images. Hortscience 45(10), 1459–1463 (2010)Google Scholar
  5. 5.
    Choi, M., Woo, M., Koh, E., Lee, J., Ham, T., Seo, H., Koh, H.: Teosinte branched 1 modulates tillering in rice plants. Plant Cell Rep. 31, 57–65 (2012)CrossRefGoogle Scholar
  6. 6.
    Evers, J., Vos, J., Andrieu, B., Struik, P.: Cessation of tillering in spring wheat in relation to light interception and red : far-red ratio. Ann. Bot. 97, 649–658 (2006)CrossRefGoogle Scholar
  7. 7.
    Evers, J., Vos, J., Chelle, M., Andrieu, B., Fournier, C., Struik, P.: Simulating the effects of localized red:far-red ratio on tillering in spring wheat (Triticum aestivum) using a three-dimensional virtual plant model. New Phytol. 176, 325–336 (2007)CrossRefGoogle Scholar
  8. 8.
    Frangi, A., Niessen, W., Vincken, K., Viergever, M.: 1998. Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention—miccai98, pp. 130–137. Springer, BerlinGoogle Scholar
  9. 9.
    Furbank, R.T., Tester, M.: Phenomics technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16(12), 635–644 (2011)CrossRefGoogle Scholar
  10. 10.
    Gallagher, J., Biscoe, P.: A physiological analysis of cereal yield. II: Partitioning of dry matter. Agric. Prog. 53, 51–70 (1978)Google Scholar
  11. 11.
    Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., Schreiber, F.: HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform. 12(1), 148 (2011)Google Scholar
  12. 12.
    Hilton, A.J., Jenkinson, P., Hollins, T.W., Parry, D.W.: Relationship between cultivar height and severity of fusarium ear blight in wheat. Plant Pathol. 48, 202–208 (1999)CrossRefGoogle Scholar
  13. 13.
    Home-Grown Cereals Authority: Optimum winter wheat plant production. (2000)
  14. 14.
  15. 15.
    Lammer, D., Cai, X., Arterburn, M., Chatelain, J., Murray, T., Jones, S.: A single chromosome addition from thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J. Exp. Bot. 55(403), 1715–1720 (2004)CrossRefGoogle Scholar
  16. 16.
    Lukens, L., Doebley, J.: Molecular evolution of the teosinte branched gene among maize and related grasses. Mol. Biol. Evol. 18, 627–638 (2001)CrossRefGoogle Scholar
  17. 17.
    Oscarson, P.: The strategy of the wheat plant in acclimating growth and grain production to nitrogen availability. J. Exp. Bot. 51, 1921–1929 (2000)CrossRefGoogle Scholar
  18. 18.
    Reis, M., Morais, R., Peres, E., Pereira, C., Contente, O., Soares, S., Valente, A., Baptista, J., Ferreira, P., Bulas, J., Bulas Cruz, J.: Automatic detection of bunches of grapes in natural environment from color images. J. Appl. Logic 10(4), 285–290 (2012)CrossRefGoogle Scholar
  19. 19.
    Satorre, E., Slafer, G. (eds.): Wheat: Ecology and Physiology of Yield Determination. The Haworth Press, New York (1999)Google Scholar
  20. 20.
    Sirault, X., Fripp, J., Paproki, A., Guo, J., Kuffner, P., Daily, H., Li, R., Furbank, R.: PlantScan: a three-dimensional phenotyping platform for capturing the structural dynamic of plant development and growth. In: 7th International Conference on Functional–Structural Plant Models, 75 (2013)Google Scholar
  21. 21.
    Song, Y., Glasbey, C., Horgan, G., Polder, G., Dieleman, J., van der Heijden, G.: Automatic fruit recognition and counting from multiple images. Biosyst. Eng. 118, 203–215 (2014)CrossRefGoogle Scholar
  22. 22.
    Šonka, M., Hlaváč, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 4th edn. Cengage Learning, Boston (2014)Google Scholar
  23. 23.
    The UK National Plant Phenomics Centre. (2014)
  24. 24.
    Whipple, C., Kebrom, T., Weber, A., Yang, F., Hall, D., Meeley, R., Schmidt, R., Doebley, J., Brutnell, T., Jackson, D.: Grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc. Natl. Acad. Sci. USA 108(33), 506–512 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Plant Phenomics Centre, IBERSAberystwyth UniversityPlas GogerddanUK

Personalised recommendations