Skip to main content
Log in

Backward-Simulation Particle Smoother with a hybrid state for 3D vehicle trajectory, class and dimension simultaneous estimation

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

The estimation of the 3D trajectory, the class and the dimensions of a vehicle represents three relevant tasks for traffic monitoring. They are usually performed by separate sub-systems and only few existing algorithms cope with the three tasks at the same time. However, if these tasks are integrated, the trajectory estimation enforces the classification with temporal consistency, and at the same time, the estimation of the vehicle class and dimensions can be used to increase the trajectory estimate accuracy. In this work, we propose an algorithm to estimate the 3D trajectory, the class and the dimensions of vehicles simultaneously by means of a Backward-Simulation Particle Smoother whose state contains both continuous (vehicle pose and dimensions), and discrete (vehicle class) quantities. To integrate the class estimate in the Particle Smoother we model the class prediction as a Markov Chain. We performed experimental tests on both simulated and real datasets; they show that the pose and dimension estimation reaches centimeter-accuracy and the classification accuracy is higher than 95 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. PETS 2000: First IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

References

  1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. Signal Process. IEEE Trans. 50(2), 174–188 (2002). doi:10.1109/78.978374

    Article  Google Scholar 

  2. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Wiley, New York (2001)

  3. Buch, N., Orwell, J., Velastin, S.A.: 3d extended histogram of oriented gradients (3dhog) for classification of road users in urban scenes (2009)

  4. Buch, N., Orwell, J., Velastin, S.A.: Urban road user detection and classification using 3d wire frame models. IET Comput. Vis. 4(2), 105–116 (2010)

    Article  Google Scholar 

  5. Buch, N., Velastin, S., Orwell, J.: A review of computer vision techniques for the analysis of urban traffic. Intell. Transp. Syst. IEEE Trans. 12(3), 920–939 (2011). doi:10.1109/TITS.2011.2119372

    Article  Google Scholar 

  6. Buch, N., Yin, F., Orwell, J., Makris, D., Velastin, S.: Urban vehicle tracking using a combined 3D model detector and classifier. In: Velásquez, J., Ríos, S., Howlett, R., Jain, L.: (eds.) Knowledge-Based and Intelligent Information and Engineering Systems, Lecture Notes in Computer Science, vol. 5711, pp. 169–176. Springer, Berlin (2009). doi:10.1007/978-3-642-04595-0_21

  7. Godsill, S.J., Doucet, A., West, M.: Monte carlo smoothing for nonlinear time series. J. Am. Stat. Assoc. 99, 465 (2004)

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, vol. 2. Cambridge University Press, Cambridge (2000)

  9. Huber, P.J.: Robust Statistics. Springer, New York (2011)

  10. Johansson, B., Wiklund, J., Forssén, P., Granlund, G.: Combining shadow detection and simulation for estimation of vehicle size and position. Pattern Recognit. Lett. 30(8), 751–759 (2009). doi:10.1016/j.patrec.2009.03.005

    Article  Google Scholar 

  11. Koller, D., Daniilidis, K., Nagel, H.H.: Model-based object tracking in monocular image sequences of road traffic scenes. Int. J. Comput. Vis. 10, 257–281 (1993). doi:10.1007/BF01539538

  12. Lai, A., Fung, G., Yung, N.: Vehicle type classification from visual-based dimension estimation. In: Proceedings of Intelligent Transportation Systems 2001, IEEE, pp. 201–206 (2001)

  13. Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects: a survey, vol. 1. In: Proceedings of Foundations and Trends in Computer Graphics and Vision, pp. 1–89 (2005)

  14. Lou, J., Tan, T., Hu, W.: Visual vehicle tracking algorithm. Electron. Lett. 38(18), 1024–1025 (2002)

    Article  Google Scholar 

  15. Lou, J., Tan, T., Hu, W., Yang, H., Maybank, S.: 3-D model-based vehicle tracking. Image Process. IEEE Trans. 14(10), 1561–1569 (2005)

    Article  Google Scholar 

  16. Marslin, R., Sullivan, G.D., Baker, K.: Kalman filters in constrained model-based tracking. Proc. British Mach. Vis. Conf. 1991, 371–374 (1991)

    Google Scholar 

  17. Matteucci, M., Rizzi, D., Romanoni, A., Mussone, L.: 3d image processing of vehicular trajectories in roundabouts. In: Proceedings of World Conference on Transportation Research, pp. 1–11 (2013). http://www2.wctr2013rio.com/publications/1077/index.html

  18. Messelodi, S., Modena, C., Zanin, M.: A computer vision system for the detection and classification of vehicles at urban road intersections. Pattern Anal. Appl. 8, 17–31 (2005). doi:10.1007/s10044-004-0239-9

  19. Messelodi, S., Modena, C.M., Zanin, M.: A computer vision system for the detection and classification of vehicles at urban road intersections. Pattern Anal. Appl. 8(1–2), 17–31 (2005)

    Article  MathSciNet  Google Scholar 

  20. Migliore, D.A., Matteucci, M., Naccari, M.: A revaluation of frame difference in fast and robust motion detection. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, ACM, pp. 215–218 (2006)

  21. Mussone, L., Matteucci, M., Bassani, M., Rizzi, D.: An innovative method for the analysis of vehicle movements in roundabouts based on image processing. J. Adv. Transp. (2011)

  22. Mussone, L., Matteucci, M., Bassani, M., Rizzi, D.: Traffic analysis in roundabout intersections by image processing. In: Proceedings of the 18th IFAC World Congress, vol. 18, pp. 14922–14927 (2011)

  23. Neal, R.M.: Probabilistic inference using markov chain monte carlo methods (1993)

  24. Pang, C., Lam, W., Yung, N.: A method for vehicle count in the presence of multiple-vehicle occlusions in traffic images. Intell. Transp. Syst. IEEE Trans. 8(3), 441–459 (2007)

    Article  Google Scholar 

  25. Piccardi, M.: Background subtraction techniques: a review. In: Proceedings of Systems, Man and Cybernetics, 2004 IEEE International Conference vol. 4, pp. 3099–3104 (2004). doi:10.1109/ICSMC.2004.1400815

  26. Romanoni, A.: Ricostruzione 3d delle traiettorie veicolari da immagini di una o più telecamere (2012). M.Sc. Thesis (in Italian)

  27. Romanoni, A., Matteucci, M., Sorrenti, D.: Background subtraction by combining temporal and spatio-temporal histograms in the presence of camera movement. Mach. Vis. Appl. 25(6), 1573–1584 (2014). 10.1007/s00138-013-0587-9

  28. Romanoni, A., Mussone, L., Rizzi, D., Matteucci, M.: A comparison of two monte carlo algorithms for 3d vehicle trajectory reconstruction in roundabouts. Pattern Recognit. Lett. 51(0), 79–85 (2015). doi:10.1016/j.patrec.2014.09.003

  29. Salih, Y., Malik, A.S.: Comparison of stochastic filtering methods for 3D tracking. Pattern Recognit. 44(10–11), 2711–2737 (2011). (Comparison among filters)

  30. Särkkä, S.: Bayesian Filtering and Smoothing, vol. 3. Cambridge University Press, Cambridge (2013)

  31. Song, X., Nevatia, R.: Detection and tracking of moving vehicles in crowded scenes. In: Proceedings of Motion and Video Computing, 2007, IEEE Workshop on WMVC ’07, p. 4 (2007). doi:10.1109/WMVC.2007.13

  32. Tan, T., Sullivan, G., Baker, K.: Model-based localisation and recognition of road vehicles. Int. J. Comput. Vis. 27, 5–25 (1998). doi:10.1023/A:1007924428535

  33. Zhang, Z.: A flexible new technique for camera calibration. Pattern Anal. Mach. Intell. IEEE Trans. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  34. Zhang, Z., Tan, T., Huang, K., Wang, Y.: Three-dimensional deformable-model-based localization and recognition of road vehicles. Image Process. IEEE Trans. 21(1), 1–13 (2012). doi:10.1109/TIP.2011.2160954

Download references

Acknowledgments

This work has been partially supported by the Italian Ministry of University and Research (MIUR) through the “SMELLER” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Romanoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanoni, A., Sorrenti, D.G. & Matteucci, M. Backward-Simulation Particle Smoother with a hybrid state for 3D vehicle trajectory, class and dimension simultaneous estimation. Machine Vision and Applications 26, 369–385 (2015). https://doi.org/10.1007/s00138-015-0668-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0668-z

Keywords

Navigation