Machine Vision and Applications

, Volume 25, Issue 1, pp 245–262

Thermal cameras and applications: a survey

Original Paper

Abstract

Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras.

Keywords

Thermal camera Infrared radiation Thermal imaging Computer vision 

References

  1. 1.
    Airouche, M., Bentabet, L., Zelmat, M., Gao, G.: Pedestrian tracking using color, thermal and location cue measurements: a DSmT-based framework. Mach. Vis. Appl. 23, 999–1010 (2012)CrossRefGoogle Scholar
  2. 2.
    Akhloufi, M., Bendada, A.: Thermal faceprint: a new thermal face signature extraction for infrared face recognition. In: Canadian Conference on Computer and Robot Vision (2008)Google Scholar
  3. 3.
    Al-Kassir, A.R., Fernandez, J., Tinaut, F., Castro, F.: Thermographic study of energetic installations. Appl. Thermal Eng. 25(23), 183–190 (2005)CrossRefGoogle Scholar
  4. 4.
    Angaitkar, P., Saxena, K., Gupta, N., Sinhal, A.: Enhancement of infrared image for roof leakage detection. In: International Conference on Emerging Trends in Computing, Communication and Nanotechnology (2013)Google Scholar
  5. 5.
    Arenas, A.J., Gómez, F., Salas, R., Carrasco, P., Borge, C., Maldonado, A., OBrien, D.J., Martínez-Moreno, F.: An evaluation of the application of infrared thermal imaging to the tele-diagnosis of sarcoptic mange in the spanish ibex (capra pyrenaica). Vet. Parasitol. 109(1G2), 111–117 (2002)Google Scholar
  6. 6.
    Arrue, B.C., Ollero, A.: Matinez de Dios, J.R.: An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intell. Syst. Appl. 15(3), 64–73 (2000)Google Scholar
  7. 7.
    AXIS Communications: AXIS Network Cameras (2012). http://www.axis.com/products/video/camera/index.htm
  8. 8.
  9. 9.
    Aziz, M.Z., Mertsching, B.: Survivor search with autonomous UGVs using multimodal overt attention. In: IEEE International Workshop on Safety Security and Rescue Robotics (2010)Google Scholar
  10. 10.
    Bebis, G., Gyaourova, A., Singh, S., Pavlidis, I.: Face recognition by fusing thermal infrared and visible imagery. Image Vis. Comput. 24(7), 727–742 (2006)CrossRefGoogle Scholar
  11. 11.
    Benezeth, Y., Emile, B., Laurent, H., Rosenberger, C.: A real time human detection system based on far infrared vision. In: Image and Signal Processing, Lecture Notes in Computer Science, vol. 5099, pp. 76–84. Springer, Berlin (2008)Google Scholar
  12. 12.
    Bertozzi, M., Broggi, A., Caraffi, C., Rose, M.D., Felisa, M., Vezzoni, G.: Pedestrian detection by means of far-infrared stereo vision. Comput. Vis. Image Underst. 106(23), 194–204 (2007)CrossRefGoogle Scholar
  13. 13.
    Bertozzi, M., Broggi, A., Fascioli, A., Graf, T., Meinecke, M.M.: Pedestrian detection for driver assistance using multiresolution infrared vision. IEEE Trans. Veh. Technol. 53(6), 1666–1678 (2004)CrossRefGoogle Scholar
  14. 14.
    Bertozzi, M., Broggi, A., Felisa, M., Vezzoni, G., Del Rose, M.: Low-level pedestrian detection by means of visible and far infra-red tetra-vision. In: IEEE Intelligent Vehicles Symposium (2006)Google Scholar
  15. 15.
    Bertozzi, M., Broggi, A., Gomez, C.H., Fedriga, R.I., Vezzoni, G., Del Rose, M.: Pedestrian detection in far infrared images based on the use of probabilistic templates. In: IEEE Intelligent Vehicles Symposium (2007)Google Scholar
  16. 16.
    Bertozzi, M., Broggi, A., Grisleri, P., Graf, T., Meinecke, M.: Pedestrian detection in infrared images. In: IEEE Intelligent Vehicles Symposium (2003)Google Scholar
  17. 17.
    Bertozzi, M., Broggi, A., Lasagni, A., Rose, M.D.: Infrared stereo vision-based pedestrian detection. In: IEEE Intelligent Vehicles Symposium (2005)Google Scholar
  18. 18.
    Bhanu, B., Han, J.: Kinematic-based human motion analysis in infrared sequences. In: Sixth IEEE Workshop on Applications of Computer Vision (2002)Google Scholar
  19. 19.
    Bhowmik, M., De, B., Bhattacharjee, D., Basu, D., Nasipuri, M.: Multisensor fusion of visual and thermal images for human face identification using different SVM kernels. In: IEEE Long Island Systems, Applications and Technology Conference (2012)Google Scholar
  20. 20.
    Bhowmik, M.K., Bhattacharjee, D., Nasipuri, M., Basu, D.K., Kundu, M.: Classification of polar-thermal eigenfaces using multilayer perceptron for human face recognition. In: IEEE Region 10 and the Third international Conference on Industrial and, Information Systems (2008)Google Scholar
  21. 21.
    Binelli, E., Broggi, A., Fascioli, A., Ghidoni, S., Grisleri, P., Graf, T., Meinecke, M.: A modular tracking system for far infrared pedestrian recognition. In: IEEE Intelligent Vehicles Symposium (2005)Google Scholar
  22. 22.
    Buddharaju, P., Pavlidis, I.T., Tsiamyrtzis, P.: Pose-invariant physiological face recognition in the thermal infrared spectrum. In: Conference on Computer Vision and Pattern Recognition Workshop (2006)Google Scholar
  23. 23.
    Buddharaju, P., Pavlidis, I.T., Tsiamyrtzis, P., Bazakos, M.: Physiology-based face recognition in the thermal infrared spectrum. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 613–626 (2007)CrossRefGoogle Scholar
  24. 24.
    Byrnes, J.: Unexploded Ordnance Detection and Mitigation. Springer, Berlin (2009)CrossRefGoogle Scholar
  25. 25.
    Castillo, J.C., Serrano-Cuerda, J., Fernández-Caballero, A., López, M.T.: Segmenting humans from mobile thermal infrared imagery. In: Proceedings of the 3rd International Work-Conference on The Interplay Between Natural and Artificial Computation: Part II: Bioinspired Applications in Artificial and Natural Computation. Springer, Berlin (2009)Google Scholar
  26. 26.
    Chekmenev, S.Y., Farag, A.A., Essock, E.A.: Thermal imaging of the superficial temporal artery: an arterial pulse recovery model. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  27. 27.
    Chelladurai, V., Jayas, D.S., White, N.D.G.: Thermal imaging for detecting fungal infection in stored wheat. J. Stored Prod. Res. 46(3), 174–179 (2010)CrossRefGoogle Scholar
  28. 28.
    Chen, S., Leung, H.: An EM-CI based approach to fusion of IR and visual images. In: 12th International Conference on Information Fusion (2009)Google Scholar
  29. 29.
    Chen, X., Flynn, P.J., Bowyer, K.W.: IR and visible light face recognition. Comput. Vis. Image Underst. 99(3), 332–358 (2005)CrossRefGoogle Scholar
  30. 30.
    Cheng, S.Y., Park, S., Trivedi, M.: Multiperspective thermal ir and video arrays for 3d body tracking and driver activity analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2005)Google Scholar
  31. 31.
    Cilulko, J., Janiszewski, P., Bogdaszewski, M., Szczygielska, E.: Infrared thermal imaging in studies of wild animals. Eur. J. Wildl. Res. 59(1), 17–23 (2013)CrossRefGoogle Scholar
  32. 32.
    Correa, M., Hermosilla, G., Verschae, R.: Ruiz-del Solar, J.: Human detection and identification by robots using thermal and visual information in domestic environments. J. Intell. Robot. Syst. 66, 223–243 (2012)Google Scholar
  33. 33.
    Dai, C., Zheng, Y., Li, X.: Layered representation for pedestrian detection and tracking in infrared imagery. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop (2005)Google Scholar
  34. 34.
    Dai, C., Zheng, Y., Li, X.: Pedestrian detection and tracking in infrared imagery using shape and appearance. Comput. Vis. Image Underst. 106(2–3), 288–299 (2007)CrossRefGoogle Scholar
  35. 35.
    Danese, G., Giachero, M., Leporati, F., Nazzicari, N., Nobis, M.: An embedded acquisition system for remote monitoring of tire status in F1 race cars through thermal images. In: 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools (2008)Google Scholar
  36. 36.
    Davis, J.W., Keck, M.A.: A two-stage template approach to person detection in thermal imagery. In: Seventh IEEE Workshops on Application of Computer Vision (2005)Google Scholar
  37. 37.
    Davis, J.W., Sharma, V.: Robust detection of people in thermal imagery. In: Proceedings of the 17th International Conference on Pattern Recognition (2004)Google Scholar
  38. 38.
    Davis, J.W., Sharma, V.: Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 106(23), 162–182 (2007)CrossRefGoogle Scholar
  39. 39.
    Dikic, D., Kolaric, D., Lisicic, D., Benkovic, V., Horvat-Knezevic, A., Tadic, Z., Skolnik-Gadanac, K., Orsolic, N.: Use of thermography in studies of thermodynamics in frogs exposed to different ambiental temperatures. In: ELMAR (2011)Google Scholar
  40. 40.
    Dunbar, M.R., MacCarthy, K.A.: Use of infrared thermography to detect signs of rabies infection in raccoons (procyon lotor). J. Zoo Wildl. Med. 37(4), 518–523 (2006)CrossRefGoogle Scholar
  41. 41.
    Fan, K.C., Lin, C.L.: The use of thermal images of palm-dorsa vein-patterns for biometric verification. In: 17th International Conference on Pattern Recognition (2004)Google Scholar
  42. 42.
    Fang, Y., Yamada, K., Ninomiya, Y., Horn, B.K.P., Masaki, I.: A shape-independent method for pedestrian detection with far-infrared images. IEEE Trans. Veh. Technol. 53(6), 1679–1697 (2004)CrossRefGoogle Scholar
  43. 43.
    Fardi, B., Schuenert, U., Wanielik, G.: Shape and motion-based pedestrian detection in infrared images: a multi sensor approach. In: IEEE Intelligent Vehicles Symposium (2005)Google Scholar
  44. 44.
    Fehlman, W.L., Hinders, M.K.: Mobile Robot Navigation with Intelligent Infrared Image. Springer, Berlin (2010)Google Scholar
  45. 45.
    Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robot. Auton. Syst. 58(12), 1273–1281 (2010)CrossRefGoogle Scholar
  46. 46.
    Fernández-Caballero, A., Castillo, J.C., Serrano-Cuerda, J., Maldonado-Bascón, S.: Real-time human segmentation in infrared videos. Expert Syst. Appl. 38(3), 2577–2584 (2011)CrossRefGoogle Scholar
  47. 47.
    FLIR: BMW incorporates thermal imaging cameras in its cars. Application story (2011). FLIR Commercial Vision Systems B.V.Google Scholar
  48. 48.
    FLIR: Cooled versus uncooled cameras for long range surveillance. Tehnical note (2011). FLIR Commercial Vision Systems B.V.Google Scholar
  49. 49.
    FLIR: Uncooled detectors for thermal imaging cameras. Tehnical note (2011). FLIR Commercial Vision Systems B.V.Google Scholar
  50. 50.
    FLIR Systems Inc.: FLIR product overview (2012). http://www.flir.com/cs/emea/en/view/?id=42100
  51. 51.
    FLIR Systems Inc.: FLIR SR-series (2012). http://www.flir.com/cs/emea/en/view/?id=41864
  52. 52.
    Fluke Corporation: Infrared cameras and thermal cameras by fluke (2012).http://www.fluke.com/Fluke/usen/products/category.htm?category=THG-BST&parent=THG
  53. 53.
    Gade, R., Jørgensen, A., Moeslund, T.B.: Occupancy analysis of sports arenas using thermal imaging. In: Proceedings of the International Conference on Computer Vision and Applications (2012)Google Scholar
  54. 54.
    Gade, R., Jørgensen, A., Moeslund, T.B.: Long-term occupancy analysis using graph-based optimisation in thermal imagery. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)Google Scholar
  55. 55.
    Gade, R., Moeslund, T.B.: Sports type classification using signature heatmaps. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013)Google Scholar
  56. 56.
    Gault, T., Mostafa, E., Farag, A., Farag, A.: Less is more: cropping to improve facial recognition with thermal images. In: International Conference on Multimedia Technology (2011)Google Scholar
  57. 57.
    Gault, T.R., Farag, A.A.: A fully automatic method to extract the heart rate from thermal video. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013)Google Scholar
  58. 58.
    Gnee, N.S.: A study of hand vein, neck vein and arm vein extraction for authentication. In: 7th International Conference on Information, Communications and Signal Processing (2009)Google Scholar
  59. 59.
    Gowen, A.A., Tiwari, B.K., Cullen, P.J., McDonnell, K., O’Donnell, C.P.: Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 21(4), 190–200 (2010)CrossRefGoogle Scholar
  60. 60.
    Grinzato, E., Bison, P., Marinetti, S.: Monitoring of ancient buildings by the thermal method. J. Cult. Heritage 3(1), 21–29 (2002)CrossRefGoogle Scholar
  61. 61.
    Guzman, A., Goryawala, M., Adjouadi, M.: Generating thermal facial signatures using thermal infrared images. In: IEEE International Conference on Emerging Signal Processing Applications (2012)Google Scholar
  62. 62.
    Guzman, A.M., Goryawala, M., Wang, J., Barreto, A., Andrian, J., Rishe, N., Adjouadi, M.: Thermal imaging as a biometrics approach to facial signature authentication. IEEE J. Biomed. Health Inf. 17(1), 214–222 (2013)CrossRefGoogle Scholar
  63. 63.
    Han, J., Bhanu, B.: Human activity recognition in thermal infrared imagery. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2005)Google Scholar
  64. 64.
    Harangi, B., Csordás, T., Hajdu, A.: Detecting the excessive activation of the ciliaris muscle on thermal images. In: IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (2011)Google Scholar
  65. 65.
    Hardy, J.D.: The radiation of heat from the human body. III. the human skin as a black-body radiator. J. Clin. Investig. 13(4), 615–620 (1934) (American Society for Clinical Investigation)Google Scholar
  66. 66.
    Harmer, K., Yue, S., Guo, K., Adams, K., Hunter, A.: Automatic blush detection in “concealed information” test using visual stimuli. In: International Conference of Soft Computing and Pattern Recognition (2010)Google Scholar
  67. 67.
    Heo, J., Kong, S.G., Abidi, B.R., Abidi, M.A.: Fusion of visual and thermal signatures with eyeglass removal for robust face recognition. In: Conference on Computer Vision and Pattern Recognition Workshops (2004)Google Scholar
  68. 68.
    Hilsenstein, V.: Surface reconstruction of water waves using thermographic stereo imaging. In: Proceedings of Image and Vision Computing New Zealand (2005)Google Scholar
  69. 69.
    Hoegner, L., Stilla, U.: Thermal leakage detection on building facades using infrared textures generated by mobile mapping. In: Joint Urban Remote Sensing Event (2009)Google Scholar
  70. 70.
    Hu, Z., Xie, Z., Ci, Y., Wei, W.: Lecture Notes in Electrical Engineering, pp. 361–367. Molten steel level measuring method by thermal image analysis in tundish. In: Recent Advances in Computer Science and Information Engineering. Springer, Berlin (2012)Google Scholar
  71. 71.
    Hurnik, J.F., Boer, S.D., Webster, A.B.: Detection of health disorders in dairy cattle utilizing a thermal infrared scanning technique. Can. J. Anim. Sci. 64(4), 1071–1073 (1984)CrossRefGoogle Scholar
  72. 72.
    Hwang, J.H., Jun, S., Kim, S.H., Cha, D., Jeon, K., Lee, J.: Novel fire detection device for robotic fire fighting. In: International Conference on Control Automation and Systems (2010)Google Scholar
  73. 73.
    Infrared Integrated Systems Ltd: Thermal imaging cameras by Irisys (2012). http://www.irisys.co.uk/thermal-imaging/
  74. 74.
    Irani, M., Anandan, P.: Robust multi-sensor image alignment. In: Sixth International Conference on Computer Vision (1998)Google Scholar
  75. 75.
    Istenic, R., Heric, D., Ribaric, S., Zazula, D.: Thermal and visual image registration in hough parameter space. In: 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services (2007)Google Scholar
  76. 76.
    Iwasawa, S., Ebihara, K., Ohya, J., Morishima, S.: Real-time estimation of human body posture from monocular thermal images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1997)Google Scholar
  77. 77.
    Iwaszczuk, D., Hoegner, L., Stilla, U.: Matching of 3D building models with IR images for texture extraction. In: Joint Urban Remote Sensing Event (2011)Google Scholar
  78. 78.
    Jadin, M.S., Ghazali, K.H., Taib, S.: Thermal condition monitoring of electrical installations based on infrared image analysis. In: Saudi International Electronics, Communications and Photonics Conference (2013)Google Scholar
  79. 79.
    James, K., Rice, D.: Finding termites with thermal imaging. In: InfraMation (2002)Google Scholar
  80. 80.
    Jiang, G., Kang, L.: Character analysis of facial expression thermal image. In: IEEE/ICME International Conference on Complex Medical Engineering (2007)Google Scholar
  81. 81.
    Jiang, L., Tian, F., Shen, L.E., Wu, S., Yao, S., Lu, Z., Xu, L.: Perceptual-based fusion of IR and visual images for human detection. In: International Symposium on Intelligent Multimedia, Video and Speech Processing (2004)Google Scholar
  82. 82.
    Jo, A., Jang, G.J., Seo, Y., Park, J.S.: Performance improvement of human detection using thermal imaging cameras based on mahalanobis distance and edge orientation histogram. In: Information Technology Convergence, Lecture Notes in Electrical Engineering, vol. 253, pp. 817–825 (2013)Google Scholar
  83. 83.
    Johnson, M.J., Bajcsy, P.: Integration of thermal and visible imagery for robust foreground detection in tele-immersive spaces. In: 11th International Conference on Information Fusion (2008)Google Scholar
  84. 84.
    Jones, B.F., Plassmann, P.: Digital infrared thermal imaging of human skin. IEEE Eng. Med. Biol. Mag. 21(6), 41–48 (2002)CrossRefGoogle Scholar
  85. 85.
    Jones, G., Harding, C., Leung, V.: Fusion of data from visual and low-resolution thermal cameras for surveillance. IEE Seminar Digests 10062, 17–17 (2003)Google Scholar
  86. 86.
    Jones, G.D., Hodgetts, M.A., Allsop, R.E., Sumpter, N., Vicencio-Silva, M.A.: A novel approach for surveillance using visual and thermal images. In: A DERA/IEE Workshop on Intelligent Sensor Processing, 9/1–9/19 (2001)Google Scholar
  87. 87.
    Jüngling, K., Arens, M.: Feature based person detection beyond the visible spectrum. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2009)Google Scholar
  88. 88.
    Jüngling, K., Arens, M.: Local feature based person detection and tracking beyond the visible spectrum. In: Machine Vision Beyond Visible Spectrum, Augmented Vision and Reality, pp. 3–32. Springer, Berlin (2011)Google Scholar
  89. 89.
    Kallhammer, J.E., Eriksson, D., Granlund, G., Felsberg, M., Moe, A., Johansson, B., Wiklund, J., Forssen, P.E.: Near zone pedestrian detection using a low-resolution FIR sensor. In: IEEE Intelligent Vehicles Symposium (2007)Google Scholar
  90. 90.
    Kaplan, H.: Practical Applications of Infrared Thermal Sensing and Imaging Equipment, 3rd edn. SPIE Press (2007)Google Scholar
  91. 91.
    Kastek, M., Dulski, R., Trzaskawka, P., Sosnowski, T., Madura, H.: Concept of infrared sensor module for sniper detection system. In: 35th International Conference on Infrared Millimeter and Terahertz Waves (2010)Google Scholar
  92. 92.
    Kato, T., Fujii, T., Tanimoto, M.: Detection of driver’s posture in the car by using far infrared camera. In: IEEE Intelligent Vehicles Symposium (2004)Google Scholar
  93. 93.
    Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., Jayas, D.: Development of a new threshold based classification model for analyzing thermal imaging data to detect fungal infection of pistachio kernel. Agric. Res. 2(2), 127–131 (2013)CrossRefGoogle Scholar
  94. 94.
    Kido, S., Miyasaka, T., Tanaka, T., Shimizu, T., Saga, T.: Fall detection in toilet rooms using thermal imaging sensors. In: IEEE/SICE International Symposium on System Integration (2009)Google Scholar
  95. 95.
    Kolli, A., Fasih, A., Al Machot, F., Kyamakya, K.: Non-intrusive car driver’s emotion recognition using thermal camera. In: Joint 3rd International Workshop on Nonlinear Dynamics and Synchronization and 16th International Symposium on Theoretical, Electrical Engineering (2011)Google Scholar
  96. 96.
    Kondo, K., Kakuta, N., Chinzei, T., Nasu, Y., Suzuki, T., Saito, T., Wagatsuma, A., Ishigaki, H., Mabuchi, K.: Thermal rhythmography–topograms of the spectral analysis of fluctuations in skin temperature. In: 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2001)Google Scholar
  97. 97.
    Kong, S., Heo, J., Boughorbel, F., Zheng, Y., Abidi, B., Koschan, A., Yi, M., Abidi, M.: Multiscale fusion of visible and thermal IR images for illumination-invariant face recognition. Int. J. Comput. Vis. 71, 215–233 (2007)CrossRefGoogle Scholar
  98. 98.
    Krotosky, S., Cheng, S., Trivedi, M.: Face detection and head tracking using stereo and thermal infrared cameras for “smart” airbags: a comparative analysis. In: The 7th International IEEE Conference on Intelligent Transportation Systems (2004)Google Scholar
  99. 99.
    Krotosky, S.J., Trivedi, M.M.: On color-, infrared-, and multimodal-stereo approaches to pedestrian detection. IEEE Trans. Intell. Transp. Syst. 8(4), 619–629 (2007)CrossRefGoogle Scholar
  100. 100.
    Krotosky, S.J., Trivedi, M.M.: Person surveillance using visual and infrared imagery. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1096–1105 (2008)CrossRefGoogle Scholar
  101. 101.
    Kumar, P., Mittal, A., Kumar, P.: Fusion of thermal infrared and visible spectrum video for robust surveillance. In: Computer Vision, Graphics and Image Processing, Lecture Notes in Computer Science, pp. 528–539. Springer, Berlin (2006)Google Scholar
  102. 102.
    Lahiri, B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55(4), 221–235 (2012)CrossRefGoogle Scholar
  103. 103.
    Lallier, E., Farooq, M.: A real time pixel-level based image fusion via adaptive weight averaging. In: Third International Conference on Information Fusion (2000)Google Scholar
  104. 104.
    Lee, S., Shah, G., Bhattacharya, A., Motai, Y.: Human tracking with an infrared camera using a curve matching framework. EURASIP J. Adv. Signal Process. 2012, 1–15 (2012)CrossRefGoogle Scholar
  105. 105.
    Lee, S.K., McHenry, K., Kooper, R., Bajcsy, P.: Characterizing human subjects in real-time and three-dimensional spaces by integrating thermal-infrared and visible spectrum cameras. In: IEEE International Conference on Multimedia and Expo (2009)Google Scholar
  106. 106.
    Lerma, J.L., Mileto, C., Vegas, F., Cabrelles, M.: Visible and thermal IR documentation of a masonry brickwork building. In: CIPA XXI International Symposium, vol. XXXVI-5/C53, 456–459. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2007)Google Scholar
  107. 107.
    Lewis, A.W., Yuen, S.T.S., Smith, A.J.R.: Detection of gas leakage from landfills using infrared thermography—applicability and limitations. Waste Manage. Res. 21(5), 436–447 (2003)CrossRefGoogle Scholar
  108. 108.
    Leykin, A., Hammoud, R.: Robust multi-pedestrian tracking in thermal-visible surveillance videos. In: Conference on Computer Vision and Pattern Recognition Workshops (2006)Google Scholar
  109. 109.
    Leykin, A., Hammoud, R.: Real-time estimation of human attention field in LWIR and color surveillance videos. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2008)Google Scholar
  110. 110.
    Leykin, A., Hammoud, R.: Pedestrian tracking by fusion of thermal-visible surveillance videos. Mach. Vis. Appl. 21, 587–595 (2010)CrossRefGoogle Scholar
  111. 111.
    Leykin, A., Ran, Y., Hammoud, R.: Thermal-visible video fusion for moving target tracking and pedestrian classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  112. 112.
    Li, W., Zheng, D., Zhao, T., Yang, M.: An effective approach to pedestrian detection in thermal imagery. In: Eighth International Conference on Natural Computation (2012)Google Scholar
  113. 113.
    Li, Z., Yao, W., Lee, S., Lee, C., Yang, Z.: Application of infrared thermography technique in building finish evaluation. J. Nondestruct. Eval. 19, 11–19 (2000)CrossRefGoogle Scholar
  114. 114.
    Li, Z., Zhang, J., Wu, Q., Geers, G.: Feature enhancement using gradient salience on thermal image. In: International Conference on Digital Image Computing: Techniques and Applications (2010)Google Scholar
  115. 115.
    Lin, C.L., Fan, K.C.: Biometric verification using thermal images of palm-dorsa vein patterns. IEEE Trans. Circuits Syst. Video Technol. 14(2), 199–213 (2004)CrossRefGoogle Scholar
  116. 116.
    Mahlisch, M., Oberlander, M., Lohlein, O., Gavrila, D., Ritter, W.: A multiple detector approach to low-resolution FIR pedestrian recognition. In: IEEE Intelligent Vehicles Symposium (2005)Google Scholar
  117. 117.
    Mahmoud, A., EL-Barkouky, A., Farag, H., Graham, J., Farag, A.: A non-invasive method for measuring blood flow rate in superficial veins from a single thermal image. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013)Google Scholar
  118. 118.
    Mano, H., Kon, K., Sato, N., Ito, M., Mizumoto, H., Goto, K., Chatterjee, R., Matsuno, F.: Treaded control system for rescue robots in indoor environment. In: IEEE International Conference on Robotics and Biomimetics (2009)Google Scholar
  119. 119.
    Martinez-De Dios, J.R., Ollero, A.: Automatic detection of windows thermal heat losses in buildings using UAVs. In: World Automation Congress (2006)Google Scholar
  120. 120.
    Meis, U., Oberlander, M., Ritter, W.: Reinforcing the reliability of pedestrian detection in far-infrared sensing. In: IEEE Intelligent Vehicles Symposium (2004)Google Scholar
  121. 121.
    Mekyska, J., Espinosa-Duro and, V., Faundez-Zanuy, M.: Face segmentation: a comparison between visible and thermal images. In: IEEE International Carnahan Conference on Security Technology (2010)Google Scholar
  122. 122.
    Memarian, N., Chau, T., Venetsanopoulos, A.N.: Application of infrared thermal imaging in rehabilitation engineering: Preliminary results. In: IEEE Toronto International Conference Science and Technology for Humanity (2009)Google Scholar
  123. 123.
    Meneses, J., Briz, S., de Castro, A.J., Melendez, J., Lopez, F.: A new method for imaging of carbon monoxide in combustion environments. Rev. Sci. Instrum. 68(6), 2568–2573 (1997)CrossRefGoogle Scholar
  124. 124.
    MESA Imaging AG: MESA Imaging SwissRanger (2012). http://www.mesa-imaging.ch/index.php
  125. 125.
    Meyer, L.H., Jayaram, S.H., Cherney, E.A.: A novel technique to evaluate the erosion resistance of silicone rubber composites for high voltage outdoor insulation using infrared laser erosion. IEEE Trans. Dielectrics Electr. Insulation 12(6), 1201–1208 (2005)CrossRefGoogle Scholar
  126. 126.
    Microsoft: Kinect (2012). http://www.xbox.com/en-US/KINECT
  127. 127.
    Moon, S., Kong, S.G., Yoo, J.H., Chung, K.: Face recognition with multiscale data fusion of visible and thermal images. In: IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety (2006)Google Scholar
  128. 128.
    Nanda, H., Davis, L.: Probabilistic template based pedestrian detection in infrared videos. In: IEEE Intelligent Vehicle Symposium (2002)Google Scholar
  129. 129.
    Neagoe, V.E., Ropot, A.D., Mugioiu, A.C.: Real time face recognition using decision fusion of neural classifiers in the visible and thermal infrared spectrum. In: IEEE Conference on Advanced Video and Signal Based Surveillance (2007)Google Scholar
  130. 130.
    Ng, Y.M.H., Yu, M., Huang, Y., Du, R.: Diagnosis of sheet metal stamping processes based on 3-D thermal energy distribution. IEEE Trans. Autom. Sci. Eng. 4(1), 22–30 (2007)CrossRefGoogle Scholar
  131. 131.
    Ó Conaire, C., Cooke, E., O’Connor, N., Murphy, N., Smeaton, A.: Background modelling in infrared and visible spectrum video for people tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, p. 20 (2005)Google Scholar
  132. 132.
    Ó Conaire, C., Cooke, E., O’Connor, N.E., Murphy, N., Smeaton, A.F.: Fusion of infrared and visible spectrum video for indoor surveillance. In: 6th International Workshop on Image Analysis for Multimedia Interactive Services (2005)Google Scholar
  133. 133.
    Ó Conaire, C., O’Connor, N., Cooke, E., Smeaton, A.: Comparison of fusion methods for thermo-visual surveillance tracking. In: 9th International Conference on Information Fusion (2006)Google Scholar
  134. 134.
    Ohel, E., Rotman, S.R., Blumberg, D.G., Sagiv, L.: Anomaly gas remote sensing and tracking using a field-portable imaging thermal radiometric spectrometer. In: IEEE 24th Convention of Electrical and Electronics Engineers in Israel (2006)Google Scholar
  135. 135.
    Olmeda, D., de la Escalera, A., Armingol, J.: Contrast invariant features for human detection in far infrared images. In: IEEE Intelligent Vehicles Symposium (2012)Google Scholar
  136. 136.
    Olmeda, D., de la Escalera, A., Armingol, J.M.: Detection and tracking of pedestrians in infrared images. In: 3rd International Conference on Signals, Circuits and Systems (2009)Google Scholar
  137. 137.
    Padole, C.N., Alexandre, L.A.: Motion based particle filter for human tracking with thermal imaging. In: 3rd International Conference on Emerging Trends in, Engineering and Technology (2010)Google Scholar
  138. 138.
    Padole, C.N., Alexandre, L.A.: Wigner distribution based motion tracking of human beings using thermal imaging. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2010)Google Scholar
  139. 139.
  140. 140.
    Paugam, R., Wooster, M., Roberts, G.: Use of handheld thermal imager data for airborne mapping of fire radiative power and energy and flame front rate of spread. IEEE Trans. Geosci. Remote Sensing 51(6), 3385–3399 (2013)CrossRefGoogle Scholar
  141. 141.
    Pavlidis, I., Levine, J., Baukol, P.: Thermal image analysis for anxiety detection. In: International Conference on Image Processing (2001)Google Scholar
  142. 142.
    Peregrina-Barreto, H., Morales-Hernandez, L., Rangel-Magdaleno, J., Vazquez-Rodriguez, P.: Thermal image processing for quantitative determination of temperature variations in plantar angiosomes. In: IEEE International Instrumentation and Measurement Technology Conference (2013)Google Scholar
  143. 143.
    Pham, Q.C., Gond, L., Begard, J., Allezard, N., Sayd, P.: Real-time posture analysis in a crowd using thermal imaging. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  144. 144.
    Point Grey Research: Stereo vision products (2012). http://www.ptgrey.com/products/stereo.asp
  145. 145.
    Pop, F.M., Gordan, M., Florea, C., Vlaicu, A.: Fusion based approach for thermal and visible face recognition under pose and expresivity variation. In: 9th Roedunet International Conference (2010)Google Scholar
  146. 146.
    Prakash, S., Lee, P.Y., Caelli, T., Raupach, T.: Robust thermal camera calibration and 3D mapping of object surface temperatures (2006)Google Scholar
  147. 147.
    Prata, A.J., Bernardo, C.: Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera. J. Volcanol. Geothermal Res. 186(12), 91–107 (2009) Google Scholar
  148. 148.
    Price, J., Maraviglia, C., Seisler, W., Williams, E., Pauli, M.: System capabilities, requirements and design of the GDL gunfire detection and location system. In: International Symposium on Information Theory (2004)Google Scholar
  149. 149.
    Public Laboratory: Thermal photography (2012). http://publiclaboratory.org/tool/thermal-photography
  150. 150.
    Qi, H., Diakides, N.A.: Thermal infrared imaging in early breast cancer detection—a survey of recent research. In: 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2003).Google Scholar
  151. 151.
    Ran, Y., Leykin, A., Hammoud, R.: Thermal-visible video fusion for moving target tracking and pedestrian motion analysis and classification. In: Augmented Vision Perception in Infrared, Advances in Pattern Recognition, pp. 349–369. Springer, Berlin (2009)Google Scholar
  152. 152.
    Rasmussen, N.D., Morse, B.S., Goodrich, M.A., Eggett, D.: Fused visible and infrared video for use in wilderness search and rescue. In: Workshop on Applications of Computer Vision (2009)Google Scholar
  153. 153.
    Ring, E.F.J., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Meas. 33(3), R33 (2012)CrossRefGoogle Scholar
  154. 154.
    Rogler, R.D., Lobl, H., Schmidt, J.: A diagnostic system for live electrical joints in power transmission systems. In: Forty-Second IEEE Holm Conference on Electrical Contacts. Joint with the 18th International Conference on Electrical Contacts (1996)Google Scholar
  155. 155.
    Rudol, P., Doherty, P.: Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery. In: IEEE Aerospace Conference (2008)Google Scholar
  156. 156.
    San-Biagio, M., Crocco, M., Cristani, M., Martelli, S., Murino, V.: Low-level multimodal integration on riemannian manifolds for automatic pedestrian detection. In: 15th International Conference on, Information Fusion (2012)Google Scholar
  157. 157.
    Sandsten, J., Weibring, P., Edner, H., Svanberg, S.: Real-time gas-correlation imaging employing thermal background radiation. Opt. Express 6(4), 92–103 (2000)CrossRefGoogle Scholar
  158. 158.
    Schweiger, R., Franz, S., Lohlein, O., Ritter, W., Kallhammer, J.E., Franks, J., Krekels, T.: Sensor fusion to enable next generation low cost night vision systems. Opt. Sensing Detect. 7726(1), 772610–772620 (2010)Google Scholar
  159. 159.
    Serway, R.A., Jewett, J.W.: Physics for Scientists and Engineers with Modern Physics, 6th edn. Brooks/Cole–Thomson Learning (2004)Google Scholar
  160. 160.
    Shah, P., Merchant, S.N., Desai, U.B.: Fusion of surveillance images in infrared and visible band using curvelet, wavelet and wavelet packet transform. Int. J. Wavelets Multiresolut. Inf. Process. 08(02), 271–292 (2010)CrossRefMathSciNetGoogle Scholar
  161. 161.
    Siegel, R.: Land mine detection. IEEE Instrum. Meas. Mag. 5(4), 22–28 (2002)CrossRefGoogle Scholar
  162. 162.
    Sirmacek, B., Hoegner, L., Stilla, U.: Detection of windows and doors from thermal images by grouping geometrical features. In: Joint Urban Remote Sensing Event (2011)Google Scholar
  163. 163.
    Sissinto, P., Ladeji-Osias, J.: Fusion of infrared and visible images using empirical mode decomposition and spatial opponent processing. In: IEEE Applied Imagery Pattern Recognition Workshop (2011)Google Scholar
  164. 164.
    Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput. 3(2), 42–47 (2004)CrossRefGoogle Scholar
  165. 165.
    Skoglar, P., Orguner, U., Törnqvist, D., Gustafsson, F.: Pedestrian tracking with an infrared sensor using road network information. EURASIP J. Adv. Signal Process. 2012, 1–18 (2012)CrossRefGoogle Scholar
  166. 166.
    Socolinsky, D.A., Selinger, A.: Thermal face recognition over time. In: 17th International Conference on Pattern Recognition (2004)Google Scholar
  167. 167.
    Socolinsky, D.A., Selinger, A., Neuheisel, J.D.: Face recognition with visible and thermal infrared imagery. Comput. Vis. Image Underst. 91(12), 72–114 (2003)CrossRefGoogle Scholar
  168. 168.
    Socolinsky, D.A., Wolff, L.B., Neuheisel, J.D., Eveland, C.K.: Illumination invariant face recognition using thermal infrared imagery. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  169. 169.
    Sonn, S., Bilodeau, G.A., Galinier, P.: Fast and accurate registration of visible and infrared videos. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013)Google Scholar
  170. 170.
    Sony Electronics Inc.: XC-E150 Near Infrared camera (2012). http://pro.sony.com/bbsc/ssr/cat-recmedia/cat-recmediadtwo/product-XCEI50/
  171. 171.
    St-Laurent, L., Maldague, X., Prevost, D.: Combination of colour and thermal sensors for enhanced object detection. In: 10th International Conference on Information Fusion (2007)Google Scholar
  172. 172.
    Steen, K.A., Villa-Henriksen, A., Therkildsen, O.R., Karstoft, H., Green, O.: Automatic detection of animals using thermal imaging. In: International Conference on Agricultural Engineering (2012)Google Scholar
  173. 173.
    Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared images and histograms of oriented gradients. In: IEEE Intelligent Vehicles Symposium (2006)Google Scholar
  174. 174.
    Szwoch, G., Szczodrak, M.: Detection of moving objects in images combined from video and thermal cameras. In: Multimedia Communications, Services and Security, Communications in Computer and Information Science, vol. 368, pp. 262–272 (2013)Google Scholar
  175. 175.
    Toet, A., Hogervorst, M.A.: Towards an optimal color representation for multiband nightvision systems. In: 12th International Conference on Information Fusion (2009)Google Scholar
  176. 176.
    Torabi, A., Mass, G., Bilodeau, G.A.: An iterative integrated framework for thermalvisible image registration, sensor fusion, and people tracking for video surveillance applications. Comput. Vis. Image Underst. 116(2), 210–221 (2012)CrossRefGoogle Scholar
  177. 177.
    Torresan, H., Turgeon, B., Ibarra-castanedo, C., Hébert, P., Maldague, X.: Advanced surveillance systems: combining video and thermal imagery for pedestrian detection. In. In Proceedings of SPIE, Thermosense XXVI, volume 5405 of SPIE, pp. 506–515 (2004)Google Scholar
  178. 178.
    Treptow, A., Cielniak, G., Duckett, T.: Real-time people tracking for mobile robots using thermal vision. Robot. Auton. Syst. 54(9), 729–739 (2006)CrossRefGoogle Scholar
  179. 179.
    Vadivambal, R., Jayas, D.: Applications of thermal imaging in agriculture and food industry—a review. Food Bioprocess Technol. 4, 186–199 (2011)CrossRefGoogle Scholar
  180. 180.
    Vidas, S., Lakemond, R., Denman, S., Fookes, C., Sridharan, S., Wark, T.: A mask-based approach for the geometric calibration of thermal-infrared cameras. IEEE Trans. Instrum. Meas. 61(6), 1625–1635 (2012)CrossRefGoogle Scholar
  181. 181.
    Vollmer, M., Möllmann, K.P.: Infrared Thermal Imaging—Fundamentals, Research and Applications. Wiley-VCH, Weinheim (2010)Google Scholar
  182. 182.
    Walczyk, R., Armitage, A., Binnie, T.D.: An embedded real-time pedestrian detection system using an infrared camera. In: IET Irish Signals and Systems Conference (2009)Google Scholar
  183. 183.
    Wang, R., Wang, G., Chen, Z., Liu, J., Shi, Y.: An improved method of identification based on thermal palm vein image. In: Neural Information Processing, Lecture Notes in Computer Science, pp. 18–24. Springer, Berlin (2012)Google Scholar
  184. 184.
    Wang, W., Zhang, J., Shen, C.: Improved human detection and classification in thermal images. In: 17th IEEE International Conference on Image Processing (2010)Google Scholar
  185. 185.
    Warriss, P.D., Pope, S.J., Brown, S.N., Wilkins, L.J., Knowles, T.G.: Estimating the body temperature of groups of pigs by thermal imaging. Vet. Record 158, 331–334 (2006)CrossRefGoogle Scholar
  186. 186.
    Wasaki, K., Shimoi, N., Takita, Y., Kawamoto, P.N.: A smart sensing method for mine detection using time difference IR images. In: International Conference on Multisensor Fusion and Integration for Intelligent Systems (2001)Google Scholar
  187. 187.
    Wikipedia: Atmospheric transmittance (2006). http://en.wikipedia.org/wiki/File:Atmosfaerisk_spredning.gif
  188. 188.
    Wolff, L., Socolinsky, D., Eveland, C.: Face recognition in the thermal infrared. In: Computer Vision Beyond the Visible Spectrum, Advances in Pattern Recognition, pp. 167–191. Springer, Berlin (2005)Google Scholar
  189. 189.
    Wong, W.K., Chew, Z.Y., Loo, C.K., Lim, W.S.: An effective trespasser detection system using thermal camera. In: Second International Conference on Computer Research and Development (2010)Google Scholar
  190. 190.
    Wong, W.K., Lim, H.L., Loo, C.K., Lim, W.S.: Home alone faint detection surveillance system using thermal camera. In: Second International Conference on Computer Research and Development (2010)Google Scholar
  191. 191.
    Wong, W.K., Tan, P.N., Loo, C.K., Lim, W.S.: An effective surveillance system using thermal camera. In: International Conference on Signal Acquisition and Processing (2009)Google Scholar
  192. 192.
    Wu, S., Jiang, L., Xie, S., Yeo, A.C.B.: A robust method for detecting facial orientation in infrared images. Pattern Recognit. 39(2), 303–309 (2006)CrossRefGoogle Scholar
  193. 193.
    Xu, F., Liu, X., Fujimura, K.: Pedestrian detection and tracking with night vision. IEEE Trans. Intell. Transp. Syst. 6(1), 63–71 (2005)CrossRefGoogle Scholar
  194. 194.
    Yanmaz, L.E., Okumus, Z., Dogan, E.: Instrumentation of thermography and its applications in horses. J. Anim. Vet. Adv. 6(7), 858–862 (2007)Google Scholar
  195. 195.
    Ng, Y.-M.H., Du, R.: Acquisition of 3d surface temperature distribution of a car body. In: IEEE International Conference on Information Acquisition (2005)Google Scholar
  196. 196.
    Yoshitomi, Y., Miyaura, T., Tomita, S., Kimura, S.: Face identification using thermal image processing. In: 6th IEEE International Workshop on Robot and Human Communication (1997)Google Scholar
  197. 197.
    Yoshitomi, Y., Miyawaki, N., Tomita, S., Kimura, S.: Facial expression recognition using thermal image processing and neural network. In: 6th IEEE International Workshop on Robot and Human Communication (1997)Google Scholar
  198. 198.
    Yu, X., Chua, W.K., Dong, L., Hoe, K.E., Li, L.: Head pose estimation in thermal images for human and robot interaction. In: 2nd International Conference on Industrial Mechatronics and Automation (2010)Google Scholar
  199. 199.
    Zhang, L., Wu, B., Nevatia, R.: Pedestrian detection in infrared images based on local shape features. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  200. 200.
    Zhao, J., Cheung, S.c.S.: Human segmentation by fusing visible-light and thermal imaginary. In: IEEE 12th International Conference on Computer Vision Workshops (2009)Google Scholar
  201. 201.
    Zhou, D., Dillon, M., Kwon, E.: Tracking-based deer vehicle collision detection using thermal imaging. In: IEEE International Conference on Robotics and Biomimetics (2009)Google Scholar
  202. 202.
    Zhou, Y., Tsiamyrtzis, P., Lindner, P., Timofeyev, I., Pavlidis, I.: Spatiotemporal smoothing as a basis for facial tissue tracking in thermal imaging. IEEE Trans. Biomed. Eng. 60(5), 1280–1289 (2013)CrossRefGoogle Scholar
  203. 203.
    Zin, T.T., Takahashi, H., Hama, H.: Robust person detection using far infrared camera for image fusion. In: Second International Conference on Innovative Computing, Information and Control (2007) Google Scholar
  204. 204.
    Zin, T.T., Takahashi, H., Toriu, T., Hama, H.: Fusion of infrared and visible images for robust person detection. In: Image Fusion, pp. 239–264. InTech (2011)Google Scholar
  205. 205.
    Zou, X., Kittler, J., Messer, K.: Illumination invariant face recognition: a survey. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Visual Analysis of People LabAalborg UniversityAalborgDenmark

Personalised recommendations