Skip to main content
Log in

A new fusion scheme for multifocus images based on focused pixels detection

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new multifocus image fusion scheme based on the technique of focused pixels detection is proposed. First, a new improved multiscale Top-Hat (MTH) transform, which is more effective than the traditional Top-Hat transform in extracting focus information, is introduced and utilized to detect the pixels of the focused regions. Second, the initial decision map of the source images is generated by comparing the improved MTH value of each pixel. Then, the isolated regions removal method is developed and employed to refine the initial decision map. In order to improve the quality of the fused image and avoid the discontinuity in the transition zone, a dual sliding window technique and a fusion strategy based on multiscale transform are developed to achieve the transition zones fusion. Finally, the decision maps of the focused regions and the transition zones are both used to guide the fusion process, and then the final fused image is formed. The experimental results show that the proposed method outperforms the conventional multifocus image fusion methods in both subjective and objective qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Goshtasby, A.A., Nikolov, S.: Image fusion: advances in the state of the art. Inf. Fusion. 8(2), 114–118 (2007)

    Article  Google Scholar 

  2. Agrawal, D., Singhai, J.: Multifocus image fusion using modified puls coupled neural network for improved image quality. IET Image Process. 4(6), 443–451 (2010)

    Article  Google Scholar 

  3. Li, S., Yang, B.: Multifocus image fusion using region segmentation and spatial frequency. Image Vis. Comput. 26(7), 971–979 (2008)

    Article  Google Scholar 

  4. Huang, W., Jing, Z.: Evaluation of focus measures in multi-focus image fusion. Pattern Recogn. Lett. 28(4), 493–500 (2007)

    Article  Google Scholar 

  5. Lin, P.L., Huang, P.Y.: Fusion methods based on dynamic segmented morphological wavelet or cut and paste for multifocus image. Signal Process. 88(6), 1511–1527 (2008)

    Article  MATH  Google Scholar 

  6. Yang, B., Li, S.: Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 59(4), 884–892 (2010)

    Article  Google Scholar 

  7. De, I., Chanda, B., Chattopadhyay, B.: Enhancing effective depth-of-field by image fusio using mathematical morphology. Image Vis. Comput. 24(12), 1278–1287 (2006)

    Article  Google Scholar 

  8. Zhang, Y., Ge, L.: Effcient fusion scheme for multi-focus images by using blurring measure. Digital Signal Process. 19(2), 186–193 (2009)

    Article  Google Scholar 

  9. Chai, Y., Li, H.F., Li, Z.H.: Multifocus image fusion scheme using focused region detection and multiresolution. Optics Commun. 284(19), 4376–389 (2011)

    Article  Google Scholar 

  10. Pajares, G., Cruz, J.: A wavelet-based image fusion tutorial. Pattern Recogn. 37(9), 1855–1872 (2004)

    Article  Google Scholar 

  11. Redondo, R., Sroubek, F., Fischer, S., Cristobal, G.: Multifocus image fusion using the log-Gabor transform and a multisize windows technique. Inf. Fusion. 10(2), 163–171 (2009)

    Article  Google Scholar 

  12. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  13. Yang, L., Guo, B.L., Ni, W.: Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing 72(1–3), 203–211 (2008)

    Article  Google Scholar 

  14. da Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  15. Qu, X.B., Yan, J.W., Xion, H.Z., Zhu, Z.Q.: Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform. Acta Autom. Sin. 34(12), 1508–1514 (2008)

    Article  MATH  Google Scholar 

  16. Zhao, H., Li, Q., Feng, H.J.: Multi-focus color image fusion in the HSI space using the sum-modified-laplacian and a coarse edge map. Image Vis. Comput. 26(9), 1285–1295 (2008)

    Article  Google Scholar 

  17. Vizireanu, D.N., Udrea, R.M.: Visual-oriented morphological foreground content grayscale frames interpolation method. J. Electron. Imaging 18(2), 1–3 (2009)

    Article  Google Scholar 

  18. Vizireanu, D.N., Halunga, S., Marghescu, G.: Morphological skeleton decomposition interframe interpolation method. J. Electron. Imaging 19(2), 1–3 (2010)

    Article  Google Scholar 

  19. Mukhopadhyay, S., Chanda, B.: Fusion of 2D grayscale images using multiscale morphology. Pattern Recogn. 34(10), 1939–1949 (2001)

    Google Scholar 

  20. Bai, X.Z., Zhou, F.G., Xue, B.D.: Image enhancement using multiscale image features extracted by top-hat transform. Optics Laser Technol. 44(2), 328–336 (2012)

    Article  Google Scholar 

  21. Sweldens, W.: The lifting scheme: a construction of second generation wavelet. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Q., Guo, B.L.: Fusion of multi-sensor images based on the nonsubsampled contourlet transform. Act Autom. Sin. 34(2), 135–141 (2008)

    Article  MATH  Google Scholar 

  23. Li, Z.H., Jing, Z.L., Sun, S.Y., Liu, G.: Remote sensing image fusion based on steerable pyramid frame transform. Acta Optica Sin. 25(5), 598–602 (2005)

    Google Scholar 

  24. Chai, Y., Li, H.F., Zhang, X.Y.: Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain. Optik Int. J. Light Electron. Optics 123(7), 569–581 (2012)

    Article  Google Scholar 

  25. Qu, X.B., Yan, J.W., Yang, G.D.: Multifocus image fusion method of sharp frequency localized contourlet transform domain based on sum-modified-laplacian. Optics Precis. Eng. 17(5), 1203–1212 (2009)

    Google Scholar 

  26. Bai, X.Z., Zhou, F.G., Xue, B.D.: Edge preserved image fusion based on multiscale toggle contrast operator. Image Vis. Comput. 29(12), 829–839 (2011)

    Article  Google Scholar 

  27. Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Morphological hat-transform scale spaces and their use in pattern classification. Pattern Recogn. 37(5), 901–915 (2004)

    Article  Google Scholar 

  28. Qu, G., Zhang, D., Yan, P.: Information measure for performance of image fusion. Electron. Lett. 38(7), 313–315 (2002)

    Article  Google Scholar 

  29. Petrovic, V., Xydeas, C.: Sensor noise effects on signal-level image fusion performance. Inf. Fusion 4(3), 167–183 (2003)

    Article  Google Scholar 

  30. Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No.61203321), the Postdoctoral Science Foundation of China (No. 2012M521676), and the Fundamental Research Funds for the Central Universities (No.CDJXS10172205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chai, Y. & Li, Z. A new fusion scheme for multifocus images based on focused pixels detection. Machine Vision and Applications 24, 1167–1181 (2013). https://doi.org/10.1007/s00138-013-0502-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0502-4

Keywords

Navigation