Machine Vision and Applications

, Volume 25, Issue 2, pp 301–325 | Cite as

3D segmentation of abdominal CT imagery with graphical models, conditional random fields and learning

  • Chetan Bhole
  • Christopher Pal
  • David Rim
  • Axel Wismüller
Regular Paper

Abstract

Probabilistic graphical models have had a tremendous impact in machine learning and approaches based on energy function minimization via techniques such as graph cuts are now widely used in image segmentation. However, the free parameters in energy function-based segmentation techniques are often set by hand or using heuristic techniques. In this paper, we explore parameter learning in detail. We show how probabilistic graphical models can be used for segmentation problems to illustrate Markov random fields (MRFs), their discriminative counterparts conditional random fields (CRFs) as well as kernel CRFs. We discuss the relationships between energy function formulations, MRFs, CRFs, hybrids based on graphical models and their relationships to key techniques for inference and learning. We then explore a series of novel 3D graphical models and present a series of detailed experiments comparing and contrasting different approaches for the complete volumetric segmentation of multiple organs within computed tomography imagery of the abdominal region. Further, we show how these modeling techniques can be combined with state of the art image features based on histograms of oriented gradients to increase segmentation performance. We explore a wide variety of modeling choices, discuss the importance and relationships between inference and learning techniques and present experiments using different levels of user interaction. We go on to explore a novel approach to the challenging and important problem of adrenal gland segmentation. We present a 3D CRF formulation and compare with a novel 3D sparse kernel CRF approach we call a relevance vector random field. The method yields state of the art performance and avoids the need to discretize or cluster input features. We believe our work is the first to provide quantitative comparisons between traditional MRFs with edge-modulated interaction potentials and CRFs for multi-organ abdominal segmentation and the first to explore the 3D adrenal gland segmentation problem. Finally, along with this paper we provide the labeled data used for our experiments to the community.

Keywords

Segmentation Machine learning Probabilistic graphical models Random fields Adrenal gland Abdomen Graph-cuts 

References

  1. 1.
    Bauer, S., Nolte, L.P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) Medical Image Computing and Computer-Assisted Intervention 2011. Lecture Notes in Computer Science, vol. 6893, pp. 354–361 (2011)Google Scholar
  2. 2.
    Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B-48, 259–302 (1986)Google Scholar
  3. 3.
    Bhole, C., Morsillo, N., Pal, C.: 3d segmentation in ct imagery with conditional random fields and histograms of oriented gradients. In: The Second International Workshop on Machine Learning in Medical Imaging (MLMI), Medical Image Computing and Computer Assisted Intervention Society 2011 (2011)Google Scholar
  4. 4.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)MATHGoogle Scholar
  5. 5.
    Blake A., Rother C., Brown M., Perez P., Torr P.: Interactive image segmentation using an adaptive GMMRF model. In: European Conference of Computer Vision, pp. 428–441 (2004)Google Scholar
  6. 6.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  7. 7.
    Bresson, X., Vandergheynst, P., Thiran, J.P.: A variational model for object segmentation using boundary information and shape prior driven by the Mumford–Shah functional. Int. J. Comput. Vis. 68(2), 145–162 (2006)CrossRefGoogle Scholar
  8. 8.
    Byrd, R.H., Nocedal, J., Schnabel, R.H.: Representations of quasi-newton matrices and their use in limited memory methods. Math. Prog. 63(1–3), 129–156 (1994)Google Scholar
  9. 9.
    Chhikara, R.S., Folks, L.: The inverse Gaussian distribution: theory, methodology, and applications. CRC Press, London (1989)MATHGoogle Scholar
  10. 10.
    Cortes, C., Vapnik, V.: Support vector network. Mach. Learn. 20(3), 273–297 (1995)MATHGoogle Scholar
  11. 11.
    Criminisi, A., Shotton, J., Robertson, D.P., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies, pp. 106–117. In: Medical Computer Vision. International Workshop MICCAI (2010)Google Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE Computer Society, New York (2005)Google Scholar
  13. 13.
    Druck, G., Pal, C., McCallum, A., Zhu, X.: Semi-supervised classification with hybrid generative/discriminative methods. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 280–289. ACM, New York (2007)Google Scholar
  14. 14.
    Heimann, T., Styner, M., van Ginneken, B. (eds.): 3D Segmentation in the Clinic: A Grand, Challenge, pp. 7–15 (2007)Google Scholar
  15. 15.
    Graf, F., Kriegel, H.P., Schubert, M., Strukelj, M., Cavallaro A.: Fully automatic detection of the vertebrae in 2D CT images. In: SPIE Medical Imaging, vol 7962 (2011)Google Scholar
  16. 16.
    Heimann, T., van Ginneken, B., Styner, M., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H., Bornik, A., Cashman, P., Chi, Y., Cordova, A., Dawant, B., Fidrich, M., Furst, J., Furukawa, D., Grenacher, L., Hornegger, J., Kainmueller, D., Kitney, R., Kobatake, H., Lamecker, H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S., Meinzer, H.P., Nemeth, G., Raicu, D., Rau, A., van Rikxoort, E., Rousson, M., Rusko, L., Saddi, K., Schmidt, G., Seghers, D., Shimizu, A., Slagmolen, P., Sorantin, E., Soza, G., Susomboon, R., Waite, J., Wimmer, A., Wolf, I.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  17. 17.
    Heskes, T.: Stable fixed points of loopy belief propagation are local minima of the bethe free energy. In: Neural Information Processing Systems, pp. 343–350. MIT Press, Cambridge (2003)Google Scholar
  18. 18.
    Hocking, R.: The analysis and selection of variables in linear regression. Biometrics 32(1), (1976)Google Scholar
  19. 19.
    Huang, C., Darwiche, A.: Inference in belief networks: a procedural guide. Int. J. Approx. Reason. 15(3), 225–263 (1996)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Johnson, P., Horton, K., Fishman, E.: Adrenal mass imaging with multidetector CT: pathologic conditions, pearls, and pitfalls. RadioGraphics 29, 1333–1351 (2009)CrossRefGoogle Scholar
  21. 21.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26, 65–81 (2004)CrossRefGoogle Scholar
  22. 22.
    Kschischang, F., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum–product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kumar, S., Hebert, M.: Discriminative random fields: a discriminative framework for contextual interaction in classification. IEEE Int. Conf. Comput. Vis. 2, 1150 (2003)Google Scholar
  24. 24.
    Lafferty, J., Zhu, X., Liu, Y.: Kernel conditional random fields. In: Twenty-First International Conference on Machine Learning, p. 64. ACM Press, New York, NY, USA (2004)Google Scholar
  25. 25.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data, pp. 282–289. In: Proceedings of the Eighteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., Burlington (2001)Google Scholar
  26. 26.
    Lee, C.H., Wang, S., Murtha, A., Brown, M.R.G., Greiner, R.: Segmenting brain tumors using pseudo-conditional random fields, pp. 359–366. In: Medical Image Computing and Computer Assisted Intervention Society (2008)Google Scholar
  27. 27.
    Ling, H., Zhou, S., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hierarchical, learning-based automatic liver segmentation. In: IEEE Conference on Computer Vission and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  28. 28.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)Google Scholar
  29. 29.
    Mayo-Smith, W., Boland, G., Noto, R., Lee, M.: State-of-the-art adrenal imaging. RadioGraphics 21, 995–1012 (2001)CrossRefGoogle Scholar
  30. 30.
    Monaco, J., Madabhushi, A.: Weighted maximum posterior marginals for random fields using an ensemble of conditional densities from multiple markov chain monte carlo simulations. IEEE Trans. Med. Imaging 30(7), 1353–1364 (2011)CrossRefGoogle Scholar
  31. 31.
    Morsillo, N., Pal, C., Nelson, R.: Mining the web for visual concepts. In: Proceedings of the 9th International Workshop on Multimedia Data Mining, pp. 18–25. ACM, New York (2008)Google Scholar
  32. 32.
    Motwani, K., Adluru, N., Hinrichs, C., Alexander, A.L., Singh, V.: Epitome driven 3-D Diffusion Tensor image segmentation: on extracting specific structures. Adv. Neural Inf. Process. Syst. 23, 1696–1704 (2010)Google Scholar
  33. 33.
    Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: an empirical study. In: Proceedings of Uncertainty in AI, pp. 467–475 (1999)Google Scholar
  34. 34.
    Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of logistic regression and Naive Bayes. Adv. Neural Inf. Process. Syst. 2, 841–848 (2001)Google Scholar
  35. 35.
    Park, H., Bland, P., Meyer, C.: Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans. Med. Imaging 22(4), 483–492 (2003)CrossRefGoogle Scholar
  36. 36.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (1988)Google Scholar
  37. 37.
    Raina, R., Shen, Y., Ng, A.Y., Mccallum, A.: Classification with hybrid generative/discriminative models. In: Advances in Neural Information Processing Systems, vol. 16. MIT Press, New York (2003)Google Scholar
  38. 38.
    Rim, D., Hassan, K., Pal, C.: Semi Supervised Learning in Wild Faces and Videos. In: British Machine Vision Conference (2011)Google Scholar
  39. 39.
    Scharstein, D., Pal, C.: Learning conditional random fields for stereo. Comput. Vis. Pattern Recognit. 1–8 (2007)Google Scholar
  40. 40.
    Seifert, S., Barbu, A., Zhou, S.K., Liu, D., Feulner, J., Huber, M., Sühling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body CT data. In: Pluim, J.P.W., Dawant, B.M. (eds.) Proceedings of the SPIE (2009)Google Scholar
  41. 41.
    Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp. 134–141. Association for Computational Linguistics, Morristown, NJ, USA (2003)Google Scholar
  42. 42.
    Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Burlington (2007)Google Scholar
  43. 43.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)CrossRefGoogle Scholar
  44. 44.
    Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propagation for stereo, using identical mrf parameters. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, IEEE Computer Society, p. 900. Washington, DC, USA (2003)Google Scholar
  45. 45.
    Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: Proceedings of Neural Information Processing Systems (2003)Google Scholar
  46. 46.
    Tipping, M.E.: The Relevance Vector Machine. In: Advances in Neural Information Processing Systems, pp. 652–658 (2000)Google Scholar
  47. 47.
    Tipping, M.E., Faul, A., Avenue, J.J.T.: Fast marginal likelihood maximisation for sparse Bayesian models. In: Proceedings Of The Ninth International Workshop On Artificial Intelligence And Statistics, pp. 3–6 (2003)Google Scholar
  48. 48.
    Tsechpenakis, G., Wang, J., Mayer, B., Metaxas, D.: Coupling CRFs and deformable models for 3D medical image segmentation. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  49. 49.
    Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)Google Scholar
  50. 50.
    Varshney, L.: Abdominal organ segmentation in CT scan images: a survey, pp. 1–3 (2002)Google Scholar
  51. 51.
    Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accelerated training of conditional random fields with stochastic gradient methods. In: Proceedings of the 23rd International Conference on Machine learning, ACM, New York, NY, USA, pp. 969–976 (2006)Google Scholar
  52. 52.
    Weinman, J.J., Tran, L., Pal, C.J.: Efficiently learning random fields for stereo vision with sparse message passing. In: European Conference on Computer Vision, pp. 617–630. Springer, Berlin (2008)Google Scholar
  53. 53.
    Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In: Proceedings of European Symposium on Artificial Neural Networks (1999)Google Scholar
  54. 54.
    Winn, J., Bishop, C.M.: Variational message passing. J. Mach. Learn. 6, 661–694 (2005)MATHMathSciNetGoogle Scholar
  55. 55.
    Xue, J.H., Titterington, D.M.: Comment on ”On discriminative vs. generative classifiers: a comparison of logistic regression and Naive Bayes”. Neural Process. Lett. 28(3), 169–187 (2008)CrossRefGoogle Scholar
  56. 56.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the EM algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  57. 57.
    Zhang, Y., Matuszewski, B.J., Shark, L.K., Moore, C.J.: Medical image segmentation using new hybrid level-set method. In: Proceedings of the 2008 Fifth International Conference BioMedical Visualization: Information Visualization in Medical and Biomedical Informatics, pp. 71–76. IEEE Computer Society, New York (2008) Google Scholar
  58. 58.
    Zhu, J., Hastie, T.: Kernel logistic regression and the import vector machine. J. Comput. Graph. Stat. 14, 1081–1088 (2001)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chetan Bhole
    • 1
  • Christopher Pal
    • 2
  • David Rim
    • 2
  • Axel Wismüller
    • 3
    • 4
  1. 1.Department of Computer ScienceUniversity of RochesterRochesterUSA
  2. 2.Département de génie informatique et génie logicielÉcole Polytechnique de MontréalMontréalCanada
  3. 3.Departments of Imaging Sciences and Biomedical EngineeringUniversity of RochesterRochesterUSA
  4. 4.Department of RadiologyUniversity of MunichMunichGermany

Personalised recommendations