Skip to main content

Advertisement

Log in

Multi-view dense 3D modelling of untextured objects from a moving projector-cameras system

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Structured light methods achieve 3D modelling by observing with a camera system, a known pattern projected on the scene. The main drawback of single projection structured light methods is that moving the projector changes significatively the appearance of the scene at every acquisition time. Classical multi-view stereovision approaches based on the appearance matching are then not useable. The presented work is based on a two-cameras and one single slide projector system embedded in a hand-held device for industrial applications (reverse engineering, dimensional control, etc). We propose a method to achieve multi-view modelling for camera pose and surface reconstruction estimation in a joint process. The proposed method is based on the extension of a stereo-correlation criterion. Acquisitions are linked through a generalized expression of local homographies. The constraints brought by this formulation allow an accurate estimation of the modelling parameters for dense reconstruction of the scene and improve the result when dealing with detailed or sharp objects, compared to pairwise stereovision methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The poses are considered optimal from our method point of view, that is to say that they are fully observed and that no better convergence can be achieved from adding keypoints.

References

  1. Alliez, P., Tayeb, S., Wormser, C.: 3d fast intersection and distance computation (aabb tree). http://www.cgal.org/Manual/latest/doc_html/cgal_manual/AABB_tree_ref/Chapter_introduction.html

  2. Attene, M., Falcidieno, B., Rossignac, J.: Spagnuolo, M. Edge-sharpener: recovering sharp features in triangulations of non-adaptively re-meshed surfaces. In: Proceedings of the ACM symposium on geometry processing, Aachen (2003)

  3. Beder, C., Bartczak, B., Koch, R.: A comparison of pmd-cameras and stereo-vision for the task of surface reconstruction using patchlets. In: Proceedings of CVPR (2007)

  4. Blais, F., Rioux, M.: Real-time numerical peak detector. Signal Process. 11(2), 145–155 (1985)

    Article  Google Scholar 

  5. Carceroni, R.L., Kutulakos, K.N.: Multi-view scene capture by surfel sampling: from video streams to non-rigid 3d motion, shape and reflectance. Int. J. Comput. Vis. 49(2), 175–214 (2002)

    Article  MATH  Google Scholar 

  6. Chang, J.Y., Lee, K.M., Lee, S.U.: Multiview normal field integration using level set methods. In: Proceedings of computer vision and pattern recognition (CVPR) (2007)

  7. Chen, Z., Zheng, Z., Ma, L.: An extended photometric stereo algorithm for recovering specular object shape and its reflectance properties. Comput. Sci. Inf. Syst. 7(1), 1–12 (2010)

    Article  MATH  Google Scholar 

  8. Coudrin, B., Devy, M., Orteu, J.J., Brèthes, L.: Registration strategies of 3d images acquired from a hand-held visual sensor. In: Proceedings of 3D-IMS, conference on 3D-imaging of materials and systems, September (2010)

  9. Coudrin, B., Devy, M., Orteu, J.J., Brèthes, L.: An innovative hand-held vision-based digitizing system for 3D modelling. Opt. Lasers Eng. 49, 1168–1176 (2011)

    Article  Google Scholar 

  10. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, SIGGRAPH, ACM, New York, pp. 303–312 (1996)

  11. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: proceedings of IEEE international conference on computer vision, pp. 1403–1410 (2003)

  12. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2007 (2007)

    Article  Google Scholar 

  13. Ferreira, J.F., Lobo, J., Dias, J.: A 3D scanner—three-dimensional reconstruction from multiple images. In: Proceedings of first international symposium on 3D data processing visualization and transmission (3DPVT’02) (2002)

  14. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Clustering views for multi-view stereo. http://grail.cs.washington.edu/software/cmvs (2011)

  15. Furukawa, Y., Ponce, J.: Accurate camera calibration from multi-view stereo and bundle adjustment. Int. J. Comput. Vision 84, 257–268 (2009)

    Article  Google Scholar 

  16. Furukawa, Y., Ponce, J.: Patch-based multi-view stereo software. http://grail.cs.washington.edu/software/pmvs (2010)

  17. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge (2004)

  18. Hernández, C., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling. Comput. Vis. Image Underst. 96, 367–392 (2004)

    Google Scholar 

  19. Lourakis, M.: Sparse non-linear least squares optimization for geometric vision. In: Proceedings of the 11th European conference on computer vision (ECCV’10), Heraklion, Greece, 5–11 Sept 2010, vol. 2, pp. 43–56 (2010)

  20. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robots 4, 333–349 (1997)

    Article  Google Scholar 

  21. Matabosch Geronès, C.: 3D hand-held sensor for large surface registration. PhD thesis, Universitat de Girona, Girona, Juin (2007)

  22. Montiel, J.M.M., Civera, J., Davison, A.J.: Unified inverse depth parametrization for monocular slam. In: Proceedings of robotics: sceince and systems (2006)

  23. Newcombe, R.A., Davison, A.J. : Live dense reconstruction with a single moving camera. In: Proceedings of computer vision and pattern recognition (CVPR) (2010)

  24. Nieto, J., Bailey, T., Nebot, E.: Scan-slam : Combining ekf-slam and scan correlation. In: Proceedings of the 5th international conference on field and service robotics FSR, Germany, Springer (2005)

  25. Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6-d slam-3d mapping outdoor environments. J. Field Robot. 24(8–9), 699–722 (2006)

    Google Scholar 

  26. Nüchter, A., Surmann, H., Lingemann, K., Hertzberg, J., Thrun, S.: 6d slam with an application in autonomous mine mapping. In: Proceedings of the IEEE international conference on robotics and automation, New Orleans, USA, April 2004, vol. 2, pp. 1998–2003 (2004)

  27. Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Rover navigation using stereo ego-motion. Robot. Auton. Syst. 43(4), 215–229 (2003)

    Article  Google Scholar 

  28. Pan, Q., Reitmayr, G., Drummond, T.W.: Interactive model reconstruction with user guidance. In: Proceedings of IEEE/ACM international symposium on mixed and augmented reality, pp. 209–210 (2009)

  29. Park, J., Kak, A.C.: Multi-peak range imaging for accurate 3d reconstruction of specular objects. In: Proceedings of 6th Asian conference on computer vision (2004)

  30. Paz, L.M., Pinies, P., Tardos, J.D., Neira, J.: Large-scale 6-dof slam with stereo-in-hand. IEEE Trans. Robot. 24(5), 946–957 (2008)

    Article  Google Scholar 

  31. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59, 207–232 (2004)

    Article  Google Scholar 

  32. Pons, J.P., Keriven, R., Faugeras, O.: Modelling dynamic scenes by registering multi-view image sequences. In: Proceedings of computer vision and pattern recognition (CVPR) (2005)

  33. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of the 3rd international conference on 3D digital imaging and modeling (3DIM), Québec City, Canada, pp. 83–90 (2001)

  34. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  35. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of 2006 IEEE computer society conference on computer vision and pattern recognition, vol. 1, pp. 519–528 (2006)

  36. Silva, L., Bellon, O.R.P., Boyer, K.L.: Multiview range image registration using the surface interpenetration measure. Image Vis. Comput. 25(1), 114–125 (2007)

    Article  Google Scholar 

  37. Sola, J., Monin, A., Devy, M.: Bicamslam: two times mono is more than stereo. In: Proceedings of the 2007 IEEE international conference on robotics and automation (ICRA’07), Rome (Italy), pp. 4795–4800 (2007)

  38. Strobl, K.H., Mair, E., Bodenmüller, T., Kielhöfer, S., Sepp, W., Suppa, M., Burschka, D., Hirzinger, G.: The self-referenced DLR 3D-modeler. In: Proceedings of IEEE international conference on intelligent robots and systems (IROS’09), October 2009

  39. Sutton, M.A., Orteu, J.J., Schreier, H.W.: Image correlation for shape, motion and deformation measurements—basic concepts theory and applications. Springer, Berlin (2009)

    Google Scholar 

  40. Szeliski, R.: Computer vision: algorithms and applications. Springer, New York (2011)

    Book  Google Scholar 

  41. Triggs, B., Mclauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment—a modern synthesis. Springer, Berlin, pp. 298–375 (2000)

  42. Vu, H.H., Labatut, P., Keriven, R., Pons, J.P.: High accuracy and visibility-consistent dense multi-view stereo. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 889–901 (2012)

    Article  Google Scholar 

  43. Wildes, R., Se, S., Jasiobedzki, P.: Stereo-vision based 3d modeling of space structures. In: Proceedings of SPIE on sensors and systems for space applications, vol. 6555, 29 May 2007

  44. Wu, C., Wilburn, B., Matsushita, Y., Theobalt, C.: High-quality shape from multi-view stereo and shading under general illumination. In: Proceedings of computer vision and pattern recognition (CVPR) (2011)

  45. Zaharescu, A., Boyer, E., Horaud, R.P.: Topology-adaptative mesh deformation for surface evolution, morphing, and multi-view reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 823–837 (2011)

    Article  Google Scholar 

  46. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Coudrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvent, J., Coudrin, B., Brèthes, L. et al. Multi-view dense 3D modelling of untextured objects from a moving projector-cameras system. Machine Vision and Applications 24, 1645–1659 (2013). https://doi.org/10.1007/s00138-013-0495-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0495-z

Keywords

Navigation