Machine Vision and Applications

, Volume 24, Issue 4, pp 821–833 | Cite as

Geometrical approach for rectification of single-lens stereovision system with a triprism

Original Paper

Abstract

This paper proposes a new method for rectification of single-lens stereovision system with a triprism. The image plane of this camera will capture three different views of the same scene behind the filter in one shot. These three sub-images can be taken as the images captured by three virtual cameras which are generated by the three Face (3F) filter (triprism). A geometry-based method is proposed to determine the pose of virtual cameras and obtain the rotational and translational transformation matrix to real camera. At the same time, the parallelogram rule and refraction rule are employed to determine the desired sketch ray functions. Followed by this, the rectification transformation matrix which applied on the images captured using the system is computed. The approach based on geometry analysis of ray sketching is significantly a simpler implementation: it does not require the usual complicated calibration process. Experimental results are presented to show the effectiveness of the approach.

Keywords

Rectification Uncalibrated  Projection matrix  Triprism virtual camera 

References

  1. 1.
    Emanuele, T., Alessandro, V.: Introductory Techniques for 3-D Computer Vision, vol. 07458. Prentice Hall, Upper Saddle River (2006)Google Scholar
  2. 2.
    Nishimoto, Y., Shirai, Y.: A feature-based stereo model using small disparities. In: Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 192–196 (1987)Google Scholar
  3. 3.
    Teoh, W., Zhang, X.D.: An inexpensive stereoscopic vision system for robots. In: Proceedings of the International Conference on Robotics, pp. 186–189 (1984)Google Scholar
  4. 4.
    Francois, A.R.J., Medioni, G.G., Waupotitsch, R.: Mirror symmetry: 2-view stereo grometry. Image Vis. Comput. 2, 137–143 (2003)CrossRefGoogle Scholar
  5. 5.
    Gosthasby, A., Gruver, W.A.: Design of s single-lens stereo camera system. Pattern Recogn. 26, 923–936 (1993)CrossRefGoogle Scholar
  6. 6.
    Lee, D.H., Kweon, I.S.: A novel stereo vision system by biprism. IEEE Trans. Robotics Autom. 16, 528–541 (2000)Google Scholar
  7. 7.
    Lim, K.B., Xiao, Y.: Virtual stereovision system: new understanding on single-lens stereovision using a biprism. J. Electron. Imag. 14(4), 043020 (2005)Google Scholar
  8. 8.
    Xiao, Y., Lim, K.B.: A prism-based single-lens stereovision system: from trinocular to multi-ocular. Image Vis. Comput. 25, 1725–1736 (2007)CrossRefGoogle Scholar
  9. 9.
    Hartley, R.I., Sturm, P.: Triangulation. Compute Vis. Image Underst. 68(2), 146–157 (1997)CrossRefGoogle Scholar
  10. 10.
    Hoff, W., Ahuja, N.: Surfaces from stereo: integrating feature matching, disparity estimation and contour detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 121–136 (1989)CrossRefGoogle Scholar
  11. 11.
    Fusiello, A., Trucco, E., Verri, A.: A compact, algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12(1), 16–22 (2000)CrossRefGoogle Scholar
  12. 12.
    Ayache, N., Lustman, F.: Trinocular stereo vision for robotics. IEEE Trans. Pattern Anal. Mach. Intell. 13, 73–85 (1991)CrossRefGoogle Scholar
  13. 13.
    Papadimitriou, D.V., Dennis, T.J.: Epipolar line estimation and rectification for stereo images pairs. IEEE Trans. Image Process. 3(4), 672–676 (1996)CrossRefGoogle Scholar
  14. 14.
    Hartley, R., Gupta, R.: Computing matched-epipolar projections. In: CVPR 93, New York, pp. 549–555 (1993)Google Scholar
  15. 15.
    Robert, L., Zeller, C., Faugeras, O., Hebert, M.: Applications of nonmetric vision to some visually guided robotics tasks. In: Aloimonos, Y. (ed.) Visual Navigation: From Biological Systems to Unmanned Ground Vehicles, Chap. 5, pp. 89–134. Lawrence Erlbaum Assoc., NJ (1997)Google Scholar
  16. 16.
    Hartley, R.: Theory and practice of projective rectification. Int J. Comput. Vis. 35(2), 1–16 (1999)CrossRefGoogle Scholar
  17. 17.
    Robert, L., Buffa, M., Hebert, M.: Weakly-calibrated stereo perception for rover navigation. In: ICCV, pp. 46–51 (1995)Google Scholar
  18. 18.
    Loop, C., Zhang, Z.: Computing rectifying homographies for stereo vision. In: IEEE CVPR, Fort Collins, vol. I, pp. 125–131 (1999)Google Scholar
  19. 19.
    Isgro, F, Trucco, E: Projective rectification without epipolar geometry. In: CVPR, Fort Collins, CO., vol. I, pp. 94–99, (1999)Google Scholar
  20. 20.
    Fusiello, A., Irsara, L.: Quasi-Euclidean Uncalibrated Epipolar Rectification. In: 19th International Conference on ICPR, pp. 1–4 (2008)Google Scholar
  21. 21.
    Gluckman, J., Nayar, S.K.: Rectifying transformations that minimize resampling effects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 01, pp. 111 (2001)Google Scholar
  22. 22.
    Al-Shalfan, K.A., Haigh, J.G.B., Ipson, S.S.: Direct algorithm for rectifying pairs of uncalibrated images. Electron. Lett. 36(5), 419–420 (2000)CrossRefGoogle Scholar
  23. 23.
    Pollefeys, M., Koch, R., Van Gool, L.: A simple and efficient rectification method for general motion. In: Proceedings of International Conference on Computer Vision, Corfu, Greece, pp. 496–501 (1999)Google Scholar
  24. 24.
    Ayache, N., Hansen, C.: Rectification of images for binocular and trinocular stereovision. In: Proceedings of International Conference on Pattern Recongition, Ergif Palace Hotel, Rome, Italy, vol. 1, pp. 11–16 (1988)Google Scholar
  25. 25.
    Shao, J., Fraser, C.: Rectification and matching of trinocular imagery. Geomatics Res. Australas. 71, 73–86 (1999)Google Scholar
  26. 26.
  27. 27.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations