Machine Vision and Applications

, Volume 24, Issue 7, pp 1371–1381 | Cite as

Classification of small lesions in dynamic breast MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement

  • Mahesh B. Nagarajan
  • Markus B. Huber
  • Thomas Schlossbauer
  • Gerda Leinsinger
  • Andrzej Krol
  • Axel Wismüller
Special Issue Paper


Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they do not exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of 60 annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter, thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented (\(p<0.05\)). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.


Minkowski Functionals Topological texture features  Mutual information Support vector regression Dynamic breast MRI 


  1. 1.
    American Cancer Society: Breast Cancer Facts& Figures 2005–2006. American Cancer Society, Atlanta (2006)Google Scholar
  2. 2.
    Kuhl, C.K., Mielcareck, P., Klaschik, S., Leutner, C., Wardelmann, E., Gieseke, J., Schild, H.H.: Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211(1), 101–110 (1999)CrossRefGoogle Scholar
  3. 3.
    Wedegärtner, U., Bick, U., Wörtler, K., Rummeny, E., Bongartz, G.: Differentiation between benign and malignant findings on MR-mammography: usefulness of morphological criteria. Eur. Radiol. 11(9), 1645–1650 (2001)CrossRefGoogle Scholar
  4. 4.
    Baum, F., Fischer, U., Vosshenrich, R., Grabbe, E.: Classification of hypervascularized lesions in CE MR imaging of the breast. Eur. Radiol. 12(5), 1087–1092 (2002)CrossRefGoogle Scholar
  5. 5.
    Szabo, B., Aspelin, P., Wiberg, M., Böne, B.: Dynamic MR imaging of the breast: analysis of kinetic and morphologic diagnostic criteria. Acta Radiol. 44(4), 379–386 (2003)Google Scholar
  6. 6.
    Chen, W., Giger, M.L., Lan, L., Bick, U.: Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics. Med. Phys. 31(5), 1076–1082 (2004)CrossRefGoogle Scholar
  7. 7.
    Wismüller, A., Meyer-Base, A., Lange, O., Schlossbauer, T., Kallergi, M., Reiser, M.F., Leinsinger, G.: Segmentation and classification of dynamic breast magnetic resonance image data. J. Electr. Imaging 15(1) (2006)Google Scholar
  8. 8.
    Gibbs, P., Turnbull, L.W.: Textural analysis of contrast-enhanced MR images of the breast. Magn. Reson. Med. 50(1), 92–98 (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, W., Giger, M.L., Li, H., Bick, U., Newstead, G.M.: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn. Reson. Med. 58(3), 562–571 (2007)CrossRefGoogle Scholar
  10. 10.
    Nie, K., Chen, J.H., Yu, H.J., Chu, Y., Nalcioglu, O., Su, M.Y.: Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad. Radiol. 15(12), 1513–1525 (2008)CrossRefGoogle Scholar
  11. 11.
    Meinel, L.A., Stolpen, A.H., Berbaum, K.S., Fajardo, L.L., Reinhardt, J.M.: Breast MRI lesion classification: improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system. J. Magn. Reson. Imaging 25(1), 89–95 (2007)CrossRefGoogle Scholar
  12. 12.
    Fischer, D., Wurdinger, S., Boettcher, J., Malich, A., Kaiser, W.: Further signs in the evaluation of magnetic resonance mammography: a retrospective study. Investig. Radiol. 40(7), 430–435 (2005)CrossRefGoogle Scholar
  13. 13.
    Schlossbauer, T., Leinsinger, G., Wismüller, A., Lange, O., Scherr, M., Meyer-Baese, A., Reiser, M.: Classification of small contrast enhancing breast lesions in dynamic magnetic resonance imaging using a combination of morphological criteria and dynamic analysis based on unsupervised vector-quantization. Investig. Radiol. 43(1), 56–64 (2008)CrossRefGoogle Scholar
  14. 14.
    Leinsinger, G., Schlossbauer, T., Scherr, M., Lange, O., Reiser, M., Wismüller, A.: Cluster analysis of signal-intensity time course in dynamic breast MRI: does unsupervised vector quantization help to evaluate small mammographic lesions? Eur. Radiol. 16(5), 1138–1146 (2006)CrossRefGoogle Scholar
  15. 15.
    Gilhuijs, K.G.A., Giger, M., Bick, U.: Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med. Phys. 25(9), 1647–1654 (1998)CrossRefGoogle Scholar
  16. 16.
    Zheng, Y., Englander, S., Baloch, S., Zacharaki, E.I., Fan, Y., Schnall, M.D., Shen, D.: STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med. Phys. 36(7), 3192–3204 (2009)CrossRefGoogle Scholar
  17. 17.
    Buelow, T., Saalbach, A., Bergtholdt, M., Wiemker, R., Buurman, H., Meinel, L.A., Newstead, G.: Heterogeneity of kinetic curve parameters as indicator for the malignancy of breast lesions in DCE MRI. Proc. SPIE Med. Imaging 7624 (2010)Google Scholar
  18. 18.
    Agner, S., Soman, S., Libfield, E., McDonald, M., Thomas, K., Englander, S., Rosen, M., Chin, D., Nosher, J., Madabhushi, A.: Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J. Digital Imaging 24(3), 446–463 (2011)CrossRefGoogle Scholar
  19. 19.
    Nagarajan, M.B., Huber, M.B., Schlossbauer, T., Leinsinger, G., Krol, A., Wismüller, A.: Classification of Small Lesions on Breast MRI: evaluating the role of dynamically extracted texture through feature selection. J. Med. Biol. Eng.(2012). doi:10.5405/jmbe.1183
  20. 20.
    Ikeda, D.M., Hylton, N.M., Kinkel, K., Hochman, M.G., Kuhl, C.K., Kaiser, W.A., Weinreb, J.C., Smazal, S.F., Degani, H., Viehweg, P., Barclay, J., Schnall, M.D.: Development, standardization, and testing of a lexicon for reporting contrast-enhanced breast magnetic resonance imaging studies. J. Magn. Reson. Imaging 13(6), 889–895 (2001)CrossRefGoogle Scholar
  21. 21.
    D’Orsi, C.J., Bassett, L., Berg, W., Feig, S., Jackson, J., Kopans, D.: Breast Imaging Reporting and Data System (BI-RADS) Breast Imaging Atlas. American College of Radiology, Reston (2003)Google Scholar
  22. 22.
    Michielsen, K., Raedt, H.: Integral-geometry morphological image analysis. Phys. Rep. 347(6), 461–538 (2001) Google Scholar
  23. 23.
    Boehm, H., Fink, C., Attenberger, U., Becker, C., Behr, J., Reiser, M.: Automated classification of normal and pathologic pulmonary tissue by topological texture features extracted from multi-detector CT in 3D. Eur. Radiol. 18(12), 2745–2755 (2008)CrossRefGoogle Scholar
  24. 24.
    Huber, M., Nagarajan, M., Leinsinger, G., Eibel, R., Ray, L., Wismüller, A.: Performance of topological texture features to classify fibrotic interstitial lung disease patterns. Med. Phys. 38(4), 2035–2044 (2011)CrossRefGoogle Scholar
  25. 25.
    Boehm, H., Vogel, T., Panteleon, A., Burklein, D., Bitterling, H., Reiser, M.: Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images. Osteoporos Int. 18(6), 779–787 (2007)CrossRefGoogle Scholar
  26. 26.
    Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)CrossRefGoogle Scholar
  27. 27.
    Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1996)Google Scholar
  28. 28.
    Cortes, C., Vapnik, V.: Support vector networks. Mach. Learning 20, 273–297 (1995)MATHGoogle Scholar
  29. 29.
    Chen, W.J., Giger, M.L., Bick, U.: A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad. Radiol. 13(1), 63–72 (2006)CrossRefGoogle Scholar
  30. 30.
    Haralick, R.M., Shanmuga, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. Smc3(6), 610–621 (1973)Google Scholar
  31. 31.
    Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)CrossRefGoogle Scholar
  32. 32.
    Tourassi, G., Frederick, E., Markey, M., Floyd Jr, C.: Application of the mutual information criterion for feature selection in computer-aided diagnosis. Med. Phys. 28(12), 2394–2402 (2001)CrossRefGoogle Scholar
  33. 33.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)Google Scholar
  34. 34.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software available at cjlin/libsvm. ACM Trans. Intell. Syst. Technol. 2 27(1–27), 27 (2011)Google Scholar
  35. 35.
    Wright, S.P.: Adjusted P-values for simultaneous inference. Biometrics 48(4), 1005–1013 (1992)CrossRefGoogle Scholar
  36. 36.
    Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)MathSciNetMATHGoogle Scholar
  37. 37.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mahesh B. Nagarajan
    • 1
  • Markus B. Huber
    • 1
  • Thomas Schlossbauer
    • 2
  • Gerda Leinsinger
    • 2
  • Andrzej Krol
    • 3
  • Axel Wismüller
    • 1
    • 2
  1. 1.Department of Imaging Sciences and Biomedical EngineeringUniversity of RochesterRochesterUSA
  2. 2.Department of RadiologyLudwig Maximilians UniversitätMunichGermany
  3. 3.Department of RadiologySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations