Machine Vision and Applications

, Volume 24, Issue 2, pp 393–406 | Cite as

Autocalibration-based partioning relationship and parallax relation for head-mounted eye trackers

  • Sacha BernetEmail author
  • Christophe Cudel
  • Damien Lefloch
  • Michel Basset
Original Paper


This paper presents new methods to calibrate a head-mounted Eye Tracker (ET) automatically, as well as a new way to obtain an estimated point of regard (POR), taking account of the parallax. Calibration is performed in real time; it is easy for the user who just needs to look at one calibration pattern for a few seconds before starting. This method provides a very important couple of points which helps to use a local relationship to compute the POR instead of a global one. This approach significantly improves the precision of the points of regard when the scene camera is mounted with a short focal lens. An estimation of POR when the user looks somewhere outside the calibration distance is also proposed. This estimation is based on an ET modelling such as a stereovision system, to take account of the parallax effect. The aim of this study is to simplify the use of ET techniques for “non-initiated” people, especially here learner drivers.


Eye tracking Calibration Image processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basset, M., Cudel, C., Gissinger, G.: Visual characterization of the road driver’s behavior. In: Intelligent Signal Processing (2005)Google Scholar
  2. 2.
    Bernet, S., Sturm, P., Cudel, C., Basset, M.: Study on the interest of hybrid fundamental matrix for head mounted eye tracker modeling. In: Proceedings of the British Machine Vision Conference, pp. 15.1–15.10. BMVA Press, Guildford (2011)Google Scholar
  3. 3.
    Blixt, P., Hoglund, A., Rehnstrom, B., Elvesjö, J.: Visual display with illuminators for gaze tracking, Patent: A61B3/113 and 20110069277 (2011)Google Scholar
  4. 4.
    Böhme, M., Dorr, M., Graw, M., Martinetz, T., Barth, E.: A software framework for simulating eye trackers. In: ETRA ’08: Proceedings of the 2008 Symposium on Eye Tracking Research and Applications, pp. 251–258. ACM, New York (2008)Google Scholar
  5. 5.
    Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH’84: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 207–212. ACM, New York (1984)Google Scholar
  6. 6.
    Cudel, C., Bernet, S., Basset, M.: Fast and easy calibration for a head mounted eye tracker. In: COGAIN Communication, Environment and Mobility Control by Gaze, pp. 11–14 (2008)Google Scholar
  7. 7.
    Djamasbi S., Siegel M., Tullis T.: Generation y, web design, and eye tracking. Int. J. Hum. Comput. Stud. 68(5), 307–323 (2010)CrossRefGoogle Scholar
  8. 8.
    Dongheng, L.: Low-cost eye-tracking for human computer interaction. Master’s thesis, Iowa State University (2006)Google Scholar
  9. 9.
    Dongheng L., David W., Derrick J.P.: Starburst: a hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches. Comput. Vis. Pattern Recognit. Workshop 0, 79 (2005)Google Scholar
  10. 10.
    Droege, D., Schmidt, C., Paulus, D.: A comprarison of pupil centre estimation algorithms. In: 4th Conference on Communication by Gaze Interaction COGAIN 2008. Prague, Czech Republic (2008)Google Scholar
  11. 11.
    Duchowski A.T.: Eye Tracking Methodology: Theory and Practice. Springer, New York (2007)Google Scholar
  12. 12.
    Duchowski, A.T., Medlin, E., Gramopadhye, A., Melloy, B., Nair, S.: Binocular eye tracking in vr for visual inspection training. In: VRST’01: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 1–8. ACM, New York (2001)Google Scholar
  13. 13.
    Fischler M.A., Bolles R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Franchak J.M., Adolph K.E.: Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults. Perception and Action: Part I. Vis. Res. 50(24), 2766–2774 (2010)Google Scholar
  15. 15.
    Gruen A., Huang T.S.: Calibration and Orientation of Cameras in Computer Vision. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hansen, D.W., Agustin, J.S., Villanueva, A.: Homography normalization for robust gaze estimation in uncalibrated setups. In: Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, ETRA’10, pp. 13–20. ACM, New York (2010)Google Scholar
  17. 17.
    Hartley R., Zisserman A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)Google Scholar
  18. 18.
    Howell, I., Aulikki, H., Stephen, V., Ali, N.: User performance of gaze-based interaction with on-line virtual communities. In: Communication by Gaze Interaction (COGAIN), pp. 28–32 (2008)Google Scholar
  19. 19.
    ICNIRP: Light-emitting diodes (leds) and laser diodes: Implications for hazard assessment. Health Phys. 78(6), 744–752 (2000)CrossRefGoogle Scholar
  20. 20.
    Kumar, N., Kohlbecher, S., Schneider, E.: A novel approach to video-based pupil tracking. In: SMC’09: Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 1255–1262. IEEE Press, Piscataway (2009)Google Scholar
  21. 21.
    Muller, P.U., Cavegn, D., d’Ydewalle, G., Groner, R.: Comparison of a new limbus tracker, corneal reflection technique, purkinje eye tracking and electro-oculography. Perception and Cognition, Elsevier Science Publishers, Amsterdam, pp. 393–401 (1993)Google Scholar
  22. 22.
    Noris, B., Benmachiche, K., G. Billard, A.: Calibration-free eye gaze direction detection with gaussian processes. In: Proceedings of the International Conference on Computer Vision Theory and Applications (2008)Google Scholar
  23. 23.
    Petr, N., Tomas, K., Libor, P., Marcel, F., Olga, S.: Al support for a gaze controlled wheelchair. In: Communication by Gaze Interaction (COGAIN), pp. 19–22 (2008)Google Scholar
  24. 24.
    Pomplun, M., Velichkovsky, B., Ritter, H.: An artificial neural network for high precision eye movement tracking. In: Nebel, B., Dreschler-Fischer, L. (eds.) KI-94: Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 861, pp. 63–69. Springer, Berlin (1994)Google Scholar
  25. 25.
    Putra D., Cahyawan A., Perdana Y.: Low-cost based eye tracking and eye gaze estimation. Telkomnika 9, 377–386 (2011)Google Scholar
  26. 26.
    Ramanauskas, N., Daunys, G., Dervinis, D.: Investigation of calibration techniques in video based eye tracking system. In: Proceedings of the 11th International Conference on Computers Helping People with Special Needs, ICCHP’08, pp. 1208–1215. Springer, Berlin (2008)Google Scholar
  27. 27.
    Rash C.E.: A 25-year retrospective review of visual complaints and illusions associated with a monocular helmet-mounted display. Health and safety aspects of visual displays. Displays 29(2), 70–80 (2008)Google Scholar
  28. 28.
    Scott, D., Findlay, J.M.: Visual search, eye movements and display units, human factors report. Tech. rep., University of Durham (1993)Google Scholar
  29. 29.
    Sliney, D., Wolbarst, M.: Safety with Lasers and Other Optical Sources: A Comprehensive Handbook. Springer, New York (1980)Google Scholar
  30. 30.
    Stefanovic, P.: Relative orientation—a new approach. Tech. rep., Institute for Aerial Survey and Earth Sciences, pp. 418–448 (1973)Google Scholar
  31. 31.
    Sturm P., Ramalingam S.: Géometrie d’images multiples pour des modèles de caméras généraux. TDS Traitement du Signal 22(5), 483–495 (2005)zbMATHGoogle Scholar
  32. 32.
    Villanueva A., Cabeza R., Porta S.: Eye tracking: Pupil orientation geometrical modeling. Image Vis. Comput. 24(7), 663–679 (2005)CrossRefGoogle Scholar
  33. 33.
    Zhang Z.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27, 161–195 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sacha Bernet
    • 1
    Email author
  • Christophe Cudel
    • 1
  • Damien Lefloch
    • 1
  • Michel Basset
    • 1
  1. 1.MIPS Université de Haute AlsaceMulhouse CedexFrance

Personalised recommendations