Skip to main content
Log in

Embedding class information into local invariant features by low-dimensional retinotopic mapping

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new general framework to obtain more distinctive local invariant features by projecting the original feature descriptors into low-dimensional feature space, while simultaneously incorporating also class information. In the resulting feature space, the features from different objects project to separate areas, while locally the metric relations between features corresponding to the same object are preserved. The low-dimensional feature embedding is obtained by a modified version of classical Multidimensional Scaling, which we call supervised Multidimensional Scaling (sMDS). Experimental results on a database containing images of several different objects with large variation in scale, viewpoint, illumination conditions and background clutter support the view that embedding class information into the feature representation is beneficial and results in more accurate object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowe D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 12(60), 91–110 (2004)

    Article  Google Scholar 

  2. Bay H., Ess A., Tuytelaars T., Van Gool L.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 20–25 (2005)

  4. Tuytelaars T., Mikolajczyk K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2007)

    Article  Google Scholar 

  5. Murase H., Nayar S.: Visual learning and recognition of 3-D objects from appearance. Int. J. Comput. Vis. 14(1), 5–24 (1995)

    Article  Google Scholar 

  6. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In: Proceedings of ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)

  7. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, pp. 1470–1477 (2003)

  8. Cox T., Cox M.: Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC, Boca Raton (2000)

    Book  Google Scholar 

  9. Jolliffe I.: Principal Component Analysis. Springer, Berlin (1986)

    Google Scholar 

  10. Ke Y., Sukthankar R.: PCA-SIFT: a more distinctive representation for local image descriptors. Proc. IEEE Confer. Comput. Vis. Pattern Recogn. 2, 506–513 (2004)

    Google Scholar 

  11. Grauman K., Darrell T.: The pyramid match kernel: discriminative classification with sets of image features. Proc. IEEE Int. Confer. Comput. Vis. 2, 1458–1465 (2005)

    Google Scholar 

  12. van Gemert, J.C., Geusebroek, J.M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene categorization. In: Proceedings of European Conference Computer Vision (2008)

  13. Hua, G., Brown, M., Winder, S.: Discriminant embedding for local image descriptors. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1–8 (2007)

  14. Belhumeur P.N., Hespanha J.P., Kriegman D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. PAMI 19(7), 711–720 (1997)

    Article  Google Scholar 

  15. Torgeson W.: Multidimensional scaling: I. Theory Method. Psychometrika 17, 401–419 (1952)

    Article  MathSciNet  Google Scholar 

  16. Mardia K., Kent J., Bibby J.: Multivariate Analysis. Academic Press, New York (1979)

    MATH  Google Scholar 

  17. Wandell B., Brewer A.A., Dougherty R.F.: Visual field map clusters in human cortex. Phil. Trans. R. Soc. Lond. 360, 693–707 (2005)

    Article  Google Scholar 

  18. Gower J.: Adding a point to vector diagrams in multivariate analysis. Biometrica 55, 582–585 (1968)

    Article  MATH  Google Scholar 

  19. Sammon J.W. Jr: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C-18(5), 401–409 (1969)

    Article  Google Scholar 

  20. Tipping, M.E.: Topographic Mapping and Feed-Forward Neural Networks. Ph.D. thesis, Aston University, Birmingham, UK (1996)

  21. Tipping M.E., Lowe D.: Shadow targets: a novel algorithm for topographic projection by radial basis function network. Proc. Int. Conf. Artif. Neural Netw. 440, 7–12 (1997)

    Article  Google Scholar 

  22. Hartman E.J., Keeler J.D., Kowalski J.W.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput. 2(2), 210–215 (1990)

    Article  Google Scholar 

  23. Park J., Sandberg I.W.: Approximation and radial basis function networks. Neural Comput. 5(2), 305–316 (1993)

    Article  Google Scholar 

  24. Nabney I.T.: Netlab—Algorithms for Pattern Recognition. Springer, Berlin (2003)

    Google Scholar 

  25. Pinz A.: Object categorization. Found. Trends Comput. Graph. Vis. 1(4), 255–353 (2005)

    Article  Google Scholar 

  26. Yan S., Xu D., Zhang B., Zhang H., Yang Q.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. PAMI 29(1), 40–51 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bisser Raytchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raytchev, B., Kikutsugi, Y., Tamaki, T. et al. Embedding class information into local invariant features by low-dimensional retinotopic mapping. Machine Vision and Applications 24, 407–418 (2013). https://doi.org/10.1007/s00138-012-0415-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-012-0415-7

Keywords

Navigation