Machine Vision and Applications

, Volume 24, Issue 2, pp 337–350 | Cite as

A new image binarization method using iterative partitioning

  • Soharab Hossain Shaikh
  • Asis Kumar Maiti
  • Nabendu ChakiEmail author
Original Paper


This paper proposes a new method for image binarization that uses an iterative partitioning approach. The proposed method has been tested towards binarization of both document and graphic images. The quantitative comparisons with other standard methods reveal that the proposed approach outperforms existing widely used binarization techniques in terms of accuracy of binarization. The experimental results further establish the superiority of the proposed method, especially for degraded documents and graphic images. The proposed algorithm is suitable for a multi-core processing environment as it can be split into multiple parallel units of executions after the initial partitioning.


Iterative partitioning Image binarization Local thresholding Misclassification error Relative foreground area error 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sezgin M., Sankur B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electr. Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  2. 2.
    Rodriguez, R.: A robust algorithm for binarization of objects. Latin Am. Appl. Res. 40 (2010)Google Scholar
  3. 3.
    Rodriguez R.: Binarization of medical images based on the recursive application of mean shift filtering: another algorithm. Adv. Appl. Bioinf. Chem 1, 1–12 (2008)Google Scholar
  4. 4.
    Valizadeh, M., Armanfard, N., Komeili, M., Kabir E.: A novel hybrid algorithm for binarization of badly illuminated document images. In: 14th International CSI Computer Conference (CSICC), pp. 121–126 (2009)Google Scholar
  5. 5.
    Kawano, H., Oohama, K., Maeda, H., Okada, Y., Ikoma, N.: Degraded document image binarization combining local statistics. In: ICROS-SICE International Joint Conference, August 18–21 (2009)Google Scholar
  6. 6.
    Chang, Y.-F., Pai, Y.-T., Ruan, S.-J.: An efficient thresholding algorithm for degraded document images based on intelligent block detection. IEEE Int. Conf. Syst. Man Cybern. SMC (2008)Google Scholar
  7. 7.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Efficient binarization of historical and degraded document images. The Eighth IAPR Workshop on Document Analysis Systems (2008)Google Scholar
  8. 8.
    Otsu N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  9. 9.
    Gatos B., Pratikakis I., Perantonis S.J.: Adaptive degraded document image binarization. Pattern Recogn 39, 317–327 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kuo, T.-Y., Lai, Y.Y., Lo, Y.-C.: A novel image binarization method using hybrid thresholding. In: Proceedings of ICME, pp. 608–612 (2010)Google Scholar
  11. 11.
    Li-Jing, T., Kan, C., Yan, Z., Xiao-Ling, F., Jian-Yong, D.: Document image binarization based on NFCM. In: 2nd International Congress on Image and Signal Processing (CISP), pp. 1–5 (2009)Google Scholar
  12. 12.
    Tanaka, H.: Threshold correction of document image binarization for ruled-line extraction. In: 10th International Conference on Document Analysis and Recognition (2009)Google Scholar
  13. 13.
    Ntirogiannis, K., Gatos, B., Pratikakis, I.: An objective evaluation methodology for document image binarization techniques. In: The 8th IAPR International Workshop on Document Analysis Systems (DAS), pp. 217–224 (2008)Google Scholar
  14. 14.
    Gatos, B., Ntirogiannis, K., Perantonis, S.J.: Improved document image binarization by using a combination of multiple binarization techniques and adapted edge information. In: International Conference on Pattern Recognition-ICPR, pp. 1–4 (2008)Google Scholar
  15. 15.
    Pan, M.S., Zhang, F., Ling, H.F.: An image binarization method based on HVS. In: Proceedings of the 8th International Conference on Multimedia and Expo, pp. 1283–1286 (2007)Google Scholar
  16. 16.
    Mello, C.A.B., Costa, A.H.M.: Image Thresholding of Historical Documents Using Entropy and ROC Curves, CIARP 2005. LNCS, vol. 3773, pp. 905–916 (2005)Google Scholar
  17. 17.
    Smith, E.H.B., Likforman-Sulem, L., Darbon, J.: Effect of pre-processing on binarization. In: Proceedings SPIE Electronic Imaging Document Recognition and Retrieval (2010)Google Scholar
  18. 18.
    Wang, Z., Li, S., Su, S., Xie, G.: Binarization algorithm of passport image based on global iterative threshold and local analysis. In: International Conference on Information Management, Innovation Management and Industrial Engineering, pp. 239–242 (2009)Google Scholar
  19. 19.
    Niblack W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice Hall, Eaglewood Cliffs (1986)Google Scholar
  20. 20.
    Bernsen, J.: Dynamic thresholding of gray level images. In: ICPR’86: Proceedings of the International Conference on Pattern Recognition, pp. 1251–1255 (1986)Google Scholar
  21. 21.
    Sauvola J., Pietikainen M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  22. 22.
    USC-SIPI Image Database, University of Southern California, Signal and Image Processing Institute.
  23. 23.
    Smith, E.H.B.: An analysis of binarization ground truthing. In: 9th IAPR International Workshop on Document Analysis Systems (2010)Google Scholar
  24. 24.
    Stathis P., Kavallieratou E., Papamarkos N.: An evaluation technique for binarization algorithms. J. Univ. Comput. Sci. 14(18), 3011–3030 (2008)Google Scholar
  25. 25.
    Lopes, N.V., et al.: Automatic histogram threshold using fuzzy measures. IEEE Trans. Image Process. 19(1) (2010)Google Scholar
  26. 26.
    Zhang Y.J.: A survey on evaluation methods for image segmentation. Pattern Recogn. 29, 1335–1346 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Soharab Hossain Shaikh
    • 1
  • Asis Kumar Maiti
    • 1
  • Nabendu Chaki
    • 1
    Email author
  1. 1.University of CalcuttaKolkataIndia

Personalised recommendations