Advertisement

Machine Vision and Applications

, Volume 25, Issue 3, pp 561–581 | Cite as

Parking assistance using dense motion-stereo

Real-time parking slot detection, collision warning and augmented parking
  • Christian UngerEmail author
  • Eric Wahl
  • Slobodan Ilic
Special Issue Paper

Abstract

The ability of generating and interpreting a three-dimensional representation of the environment in real-time is one of the key technologies for autonomous vehicles. While active sensors like ultrasounds have been commercially used, their cost and precision is not favorable. On the other hand, integrating passive sensors, like video cameras, in modern vehicles is quite appealing especially because of their low cost. However, image processing requires reliable real-time algorithms to retrieve depth from visual information. In addition, the limited processing power in automobiles and other mobile platforms makes this problem even more challenging. In this paper we introduce a parking assistance system which relies on dense motion-stereo to compute depth maps of the observed environment in real-time. The flexibility and robustness of our method is showcased with different applications: automatic parking slot detection, a collision warning for the pivoting ranges of the doors and an image-based rendering technique to visualize the environment around the host vehicle. We evaluate the accuracy and reliability of our system and provide quantitative and qualitative results. A comparison to ultrasound and feature-based motion-stereo solutions shows that our approach is more reliable.

Keywords

Dense motion-stereo Parking space detection Advanced driver assistance Collision detection Augmented parking Image-based rendering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barron J.L., Fleet D.J., Beauchemin S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)Google Scholar
  2. 2.
    Brunton, A., Shu, C., Roth, G.: Belief propagation on the gpu for stereo vision. In: Canadian Conference on Computer and Robot Vision, pp. 76–81 (2006)Google Scholar
  3. 3.
    Devernay F., Faugeras O.D.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001)CrossRefGoogle Scholar
  4. 4.
    Faugeras, O., Hotz, B., Mathieu, H., Viéville, T., Zhang, Z., Fua, P., Théron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C.: Real time correlation-based stereo: algorithm, implementations and applications. Tech. Rep. RR-2013, INRIA (1993)Google Scholar
  5. 5.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. In: CVPR (2004)Google Scholar
  6. 6.
    Fintzel, K., Bendahan, R., Bougnoux, S.: 3d parking assistant system. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 881–886 (2004)Google Scholar
  7. 7.
    Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: CVPR, pp. 807–814 (2005)Google Scholar
  8. 8.
    Hirschmüller H., Innocent P.R., Garibaldi J.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47(1–3), 229–246 (2002)zbMATHGoogle Scholar
  9. 9.
    Jung, H.G., Kim, D.S., Yoon, P.J.: Parking slot markings recognition for automatic parking assist system. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 106–113 (2006)Google Scholar
  10. 10.
    Jung, H.G., Kim, D.S., Yoon, P.J., Kim, J.: Light stripe projection based parking space detection for intelligent parking assist system. In: Proceedings of IEEE Intelligent Vehicle Symposium (2007)Google Scholar
  11. 11.
    Kämpchen, N., Franke, U., Ott, R.: Stereo vision based pose estimation of parking lots using 3d vehicle models. In: Proceedings of IEEE Intelligent Vehicle Symposium (2002)Google Scholar
  12. 12.
    Klappstein, J., Stein, F., Franke, U.: Monocular motion detection using spatial constraints in a unified manner. In: Proceedings of IEEE Intelligent Vehicle Symposium, pp. 261–267 (2006)Google Scholar
  13. 13.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: ICCV, pp. 508–515 (2001)Google Scholar
  14. 14.
    Lu Y., Zhang J.Z., Wu Q.M.J., Li Z.N.: A survey of motion-parallax-based 3-d reconstruction algorithms. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 34(4), 532–548 (2004)CrossRefGoogle Scholar
  15. 15.
    Merrell, P., Akbarzadeh, A., Wang, L., Frahm, J.M., Yang, R., Nistér, D.: Real-time visibility-based fusion of depth maps. In: ICCV, pp. 1–8 (2007)Google Scholar
  16. 16.
    Mühlmann K., Maier D., Hesser J., Männer R.: Calculating dense disparity maps from color stereo images, an efficient implementation. Int. J. Comput. Vis. 47(1–3), 79–88 (2002)zbMATHGoogle Scholar
  17. 17.
    Nistér, D.: Frame decimation for structure and motion. In: 3D Structure from Images-SMILE 2000, LNCS, pp. 17–34. Springer, Berlin (2001)Google Scholar
  18. 18.
    Park, W.J., Kim, B.S., Seo, D.E., Kim, D.S., Lee, K.H.: Parking space detection using ultrasonic sensor in parking assistance system. In: Proceedings of IEEE Intelligent Vehicle Symposium, pp. 1039–1044 (2008)Google Scholar
  19. 19.
    Pohl J., Sethsson M., Degerman P., Larsson J.: A semi-automated parallel parking system for passenger cars. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 220, 53–65 (2006)CrossRefGoogle Scholar
  20. 20.
    Pruckner, A., Gensler, F., Meitinger, K.H., Gräf, H., Spannheimer, H., Gresser, K.: Der parkassistent—ein weiteres innovatives fahrerassistenzsystem zum thema connecteddrive aus der bmw-fahrzeugforschung. In: Braunschweiger Symposium (2003)Google Scholar
  21. 21.
    Rosenberg, I.D., Davidson, P.L., Muller, C.M.R., Han, J.Y.: Real-time stereo vision using semi-global matching on programmable graphics hardware. In: SIGGRAPH 2006 Sketches (2006)Google Scholar
  22. 22.
    Schanz, A.: Fahrerassistenz zum automatischen Parken. No. 607 in 12. VDI Verlag (2005)Google Scholar
  23. 23.
    Scharstein D., Szeliski R., Zabih R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Scheunert, U., Fardi, B., Mattern, N., Wanielik, G., Keppeler, N.: Free space determination for parking slots using a 3d pmd sensor. In: Proceedings of IEEE Intelligent Vehicle Symposium, pp. 154–159 (2007)Google Scholar
  25. 25.
    Song, K.T., Chen, H.Y.: Lateral driving assistance using optical flow and scene analysis. In: Proceedings of IEEE Intelligent Vehicle Symposium, pp. 624–629 (2007)Google Scholar
  26. 26.
    Stahl, W., Hoetzel, J.: Parktronic-system (pts), aktueller stand und ausblick. Tech. Rep. 1287, VDI-Berichte (1996)Google Scholar
  27. 27.
    Suhr, J.K., Bae, K., Kim, J., Jung, H.G.: Free parking space detection using optical flow-based euclidean 3d reconstruction. In: MVA, pp. 563–566 (2007)Google Scholar
  28. 28.
    Suhr J.K., Jung H.G., Bae K., Kim J.: Automatic free parking space detection by using motion stereo-based 3d reconstruction. Mach. Vis. Appl. 21(2), 163–176 (2010)CrossRefGoogle Scholar
  29. 29.
    Torr P.H.S., Murray D.W.: The development and comparison of robust methods for estimating the fundamental matrix. Int. J. Comput. Vis. 24, 271–300 (1997)CrossRefGoogle Scholar
  30. 30.
    Unger, C., Benhimane, S., Wahl, E., Navab, N.: Efficient disparity computation without maximum disparity for real-time stereo vision. In: BMVC (2009)Google Scholar
  31. 31.
    Unger, C., Wahl, E., Ilic, S.: Efficient stereo matching for moving cameras and decalibrated rigs. Intell. Veh. 417–422 (2011)Google Scholar
  32. 32.
    Unger, C., Wahl, E., Sturm, P., Ilic, S.: Probabilistic disparity fusion for real-time motion-stereo. Tech. rep., Technische Universität München (2010). http://campar.in.tum.de/Main/ChristianUnger
  33. 33.
    Vestri, C., Bougnoux, S., Bendahan, R., Fintzel, K., Wybo, S., Abad, F., Kakinami, T.: Evaluation of a vision-based parking assistance system. In: Proceedings of IEEE Intelligent Vehicle Symposium, pp. 131–135 (2005)Google Scholar
  34. 34.
    Wahl, E., Oszwald, F., Ruß, A., Zeller, A., Rossberg, D.: Evaluation of automotive vision systems: Innovations in the development of video-based adas. In: FISITA World Automotive Congress (2008)Google Scholar
  35. 35.
    Wahl, E., Strobel, T., Ruß, A., Rossberg, D., Therburg, R.D.: Realisierung eines parkassistenten basierend auf motion-stereo. In: 16. Aachener Kolloquium (2007)Google Scholar
  36. 36.
    Wahl, E., Therburg, R.D.: Developing a motion-stereo parking assistant at bmw. MATLAB Digest (2008)Google Scholar
  37. 37.
    Wahl, E., Zeitler, W.: Video-based driver assistance systems put to test: Comparison—evaluation—series production. In: 13th International Conference: Electronic Systems for Vehicles (2007)Google Scholar
  38. 38.
    Wang, L., Liao, M., Gong, M., Yang, R., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Proc. Int. Symp. 3D Data Proc., Vis., and Transm. (3DPVT), pp. 798–805 (2006)Google Scholar
  39. 39.
    Xu, J., Chen, G., Xie, M.: Vision-guided automatic parking for smart car. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 725–730 (2000)Google Scholar
  40. 40.
    Zach, C.: Fast and high quality fusion of depth maps. In: 3DPVT (2008)Google Scholar
  41. 41.
    Zhang, G., Jia, J., Wong, T.T., Bao, H.: Recovering consistent video depth maps via bundle optimization. In: CVPR, pp. 1–8 (2008)Google Scholar
  42. 42.
    Zhang Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.BMW GroupMunichGermany
  2. 2.Technische Universität MünchenGarching, MunichGermany

Personalised recommendations