Advertisement

Machine Vision and Applications

, Volume 24, Issue 2, pp 305–318 | Cite as

Automatic laser-based identification for UF6 cylinders

  • Jian YaoEmail author
  • Pierluigi Taddei
  • Mauro R. Ruggeri
  • Gunnar Boström
  • Vítor Sequeira
Original Paper
  • 270 Downloads

Abstract

We present a laser item identification system (L2IS), installed in a real facility on trial, that is capable of automatically monitoring all transfers of uranium hexafluoride (UF6) cylinders between different process areas. Each cylinder has a unique ‘fingerprint’ represented by the 3D micro-structure of its surface which remains intact even under extreme environmental conditions. L2IS automatically identifies each cylinder through exploring the 3D frontal surface acquired by the laser scanner. The system is composed of a portable unit (operated in attended mode) and a fixed installed unit (operated without inspector presence). The efficiency and accuracy of our identification system were evaluated on a large dataset acquired during several years including a full year of field testing.

Keywords

Nuclear safeguards Automatic scan registration UF6 cylinders identification Laser item identification system (L2IS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babcock, R.A., Whitaker, J.M., Murphy, J., Oakberg, J.: Benefits of an international database for UF6 cylinders. In: 2008 Annual Meeting of the INMM, Nashville, Tennessee, July 2008Google Scholar
  2. 2.
    Friend, P., Lockwood, D., Hurt, D.: A concept for a world-wide system of identification of UF6 cylinders. In: 2009 Annual Meeting of the INMM, Tucson, Arizona, July 2009Google Scholar
  3. 3.
    Eccleston, G., Wonder, Ed.: Monitoring uranium hexafluoride UF6 cylinders. In: ORNL/TM-2009/128, June 2009Google Scholar
  4. 4.
    White, J.L., Laughter, M.D., Whitaker, J.M.: Next steps in global UF6 cylinders monitoring. In: Pacific Northwest International Conference on Global Nuclear Security, Portland, Oregon, April 2010Google Scholar
  5. 5.
    Kovacic, D., Hayes, S., Burk, D., Whitaker, M., Morgan, J.: UF6 cylinders tagging system for a uranium enrichment plant. In: ORNL/TM-2006/98 (2006)Google Scholar
  6. 6.
    Laughter, M.: Safeguard application options for the laser-based item monitoring system (LBIMS). Tech. Rep., Oak Ridge National Laboratory, Oct 2008Google Scholar
  7. 7.
    Bovisio, E., Sequeira, V., Heppleston, M., Gonçalves, J.G.M.: Identification of nuclear containers using 3D laser technologies. In: 25th ESARDA Symposium on Safeguards and Nuclear Material Management (2003)Google Scholar
  8. 8.
    Sequeira, V., Busboom, A., Boström, G., Gonçalves, J.G.M.: 3D technologies in safeguards applications. In: IAEA Symposium on International Safeguards: Addressing Verification Challenges (2006)Google Scholar
  9. 9.
    Busboomm, A., Sequeira, V.: Container integrity verification using laser triangulation. In: SPIE-Laser Radar Technology and Applications XII (2007)Google Scholar
  10. 10.
    Busboom, A., Sequeira, V., Langlands, D., Wishard, B., Poirier, S.: Laser item identification system development for a laser based identification of UF6 cylinders. In: The 29th ESARDA Symposium (2007)Google Scholar
  11. 11.
    Agboraw, E., Johnson, S., Creusot, C., Poirier, S., Saukkonen, H., Chesnay, B., Sequeira, V.: IAEA experience using the 3-dimensional laser range finder (3DLRF) for design information verification (DIV) at the Rokkasho reprocessing plant. In: International Safeguards Symposium on Addressing Verification Challenges, pp. 721–727 (2007)Google Scholar
  12. 12.
    Boström G., Fiocco M., Gonçalves J.G.M., Puig D., Sequeira V., Chartier B., Kiesser R., Mariotte F., Richard M., Zamora P.: 3D reconstruction in nuclear security. ESARDA Bull. 38, 17–24 (2008)Google Scholar
  13. 13.
    Haas, E., Khlebnikov, N., Monteith, A., Parise, D.: Laser-based techniques for IAEA safeguards detection and verification applications. In: 29th ESARDA Annual Meeting (2007)Google Scholar
  14. 14.
    sensorland.com: The online information center for sensing and measurment. http://www.sensorland.com/
  15. 15.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Communications of the ACM, pp. 726–740 (1987)Google Scholar
  16. 16.
    Besl P.J., McKay H.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  17. 17.
    Gold S., Rangarajan A., Lu C.-P., Pappu S., Mjolsness E.: New algorithms for 2D and 3D point matching: pose estimation and correspondence. Pattern Recognit. 31(8), 1019–1031 (1998)CrossRefGoogle Scholar
  18. 18.
    Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: European Conference on Computer Vision (ECCV 2002). LNCS. vol. 2353, pp. 418–432. Springer (2002)Google Scholar
  19. 19.
    Matabosch, C., Salvi, J., Fofi, D., Meriaudeau, F.: Range image registration for industrial inspection. In: Machine Vision Applications in Industrial Inspection XIII, San Jose, California, USA, January 2005Google Scholar
  20. 20.
    Viola P.A., Wells W.M. III: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24(2), 137–154 (1997)CrossRefGoogle Scholar
  21. 21.
    Umeda K., Godin G., Rioux M.: Registration of range and color images using gradient constraints and range intensity images. Int. Conf. Pattern Recognit. 3, 12–15 (2004)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jian Yao
    • 1
    Email author
  • Pierluigi Taddei
    • 1
  • Mauro R. Ruggeri
    • 1
  • Gunnar Boström
    • 1
  • Vítor Sequeira
    • 1
  1. 1.Institute for Transuranium ElementsEuropean Commission-Joint Research Centre (JRC)Ispra (VA)Italy

Personalised recommendations