Machine Vision and Applications

, Volume 23, Issue 4, pp 659–673 | Cite as

Cell morphology classification and clutter mitigation in phase-contrast microscopy images using machine learning

  • Diane H. Theriault
  • Matthew L. Walker
  • Joyce Y. Wong
  • Margrit Betke
Special Issue Paper

Abstract

We propose using machine learning techniques to analyze the shape of living cells in phase-contrast microscopy images. Large scale studies of cell shape are needed to understand the response of cells to their environment. Manual analysis of thousands of microscopy images, however, is time-consuming and error-prone and necessitates automated tools. We show how a combination of shape-based and appearance-based features of fibroblast cells can be used to classify their morphological state, using the Adaboost algorithm. The classification accuracy of our method approaches the agreement between two expert observers. We also address the important issue of clutter mitigation by developing a machine learning approach to distinguish between clutter and cells in time-lapse microscopy image sequences.

Keywords

Microscopy imaging Cell morphology Adaboost Machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Kofahi O., Radke R.J., Goderie S.K., Shen Q., Temple S., Roysam B.: Automated cell lineage construction: a rapid method to analyze clonal development established with murine neural progenitor cells. Cell Cycle 5, 327–335 (2006)CrossRefGoogle Scholar
  2. 2.
    Boland, M., Markey, M., Murphy, R.: Classification of protein localization patterns obtained via fluorescence light microscopy. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 594–597 (1997)Google Scholar
  3. 3.
    Bradhurst, C., Boles, W., Xiao, Y.: Segmentation of bone marrow stromal cells in phase contrast microscopy images. In: Proceedings of the 23rd International Conference Image and Vision Computing (IVCNZ), New Zealand, pp. 1–6 (2008)Google Scholar
  4. 4.
    Dunn G.A., Brown A.F.: Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J. Cell Sci. 83, 313–340 (1986)Google Scholar
  5. 5.
    Dzyubachyk O., van Cappellen W.A., Essers J., Niessen W., Meijering E.: Advanced level-set based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. Med. Imaging 29(3), 852–867 (2010)CrossRefGoogle Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proceedings of the Second European Conference on Computational Learning Theory (EuroCOLT ’95), London, UK, pp. 23–37. Springer-Verlag, Berlin (1995)Google Scholar
  7. 7.
    Halabi Y.S., SA Z., Hamdan F., Yousef K.H.: Modeling adaptive degraded document image binarization and optical character system. Eur. J. Sci. Res. 28(1), 14–32 (2009)Google Scholar
  8. 8.
    Han, J.W., Breckon, T.P., Randell, D.A., Landini, G.: The application of support vector machine classification to detect cell nuclei. Mach. Vis. Appl. (2010) (Published online)Google Scholar
  9. 9.
    Horn B.K.P.: Robot Vision. The MIT Press, Cambridge (1986)Google Scholar
  10. 10.
    House, D., Walker, M.L., Wu, Z., Wong, J.Y., Betke, M.: Tracking of cell populations to understand their spatio-temporal behavior in response to physical stimuli. In: Proceedings of the IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), Miami, FL pp. 186–193 (2009)Google Scholar
  11. 11.
    Hu M.-K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)MATHCrossRefGoogle Scholar
  12. 12.
    Huang K., Murphy R.: Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinform. 5(1), 78 (2004)CrossRefGoogle Scholar
  13. 13.
    Jain, R., Kasturi, R., Schunk, B.: Machine Vision. McGraw Hill, (1995)Google Scholar
  14. 14.
    Kachouie N.N., Fieguth P.W.: Extended-Hungarian-JPDA: Exact single-frame stem cell tracking. IEEE Trans. Biomed. Eng. 54(11), 2011–2019 (2007)CrossRefGoogle Scholar
  15. 15.
    Li K., Miller E.D., Chen M., Kanade T., Weiss L.E., Campbell P.G.: Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12(5), 546–566 (2008)CrossRefGoogle Scholar
  16. 16.
    Mukherjee D., Ray N., Acton S.: Level set analysis for leukocyte detection and tracking. IEEE Trans. Image Process. 13(4), 562–572 (2004)CrossRefGoogle Scholar
  17. 17.
    Murphy R.F.: Communicating subcellular distributions. Cytometry Part A 77A(7), 686–692 (2010)CrossRefGoogle Scholar
  18. 18.
    Nanni L., Lumini A., Lin Y.-S., Hsu C.-N., Lin C.-C.: Fusion of systems for automated cell phenotype image classification. Expert Syst. Appl. 37(2), 1556–1562 (2010)CrossRefGoogle Scholar
  19. 19.
    Nath S., Palaniappan K., Bunyak F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds) Medical Image Computing and Computer-Assisted Intervention MICCAI 2006. Lecture Notes in Computer Science, vol. 4190, pp. 101–108. Springer, Berlin (2006)CrossRefGoogle Scholar
  20. 20.
    Olson A.C., Larson N.M., Heckman C.A.: Classification of cultured mammalian cells by shape analysis and pattern recognition. Proc. Nat. Acad. Sci. 77(3), 1516–1520 (1980)CrossRefGoogle Scholar
  21. 21.
    Ray N., Acton S.: Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Trans. Med. Imaging 23(12), 1466–1478 (2004)CrossRefGoogle Scholar
  22. 22.
    Rodenacker K., Bengtsson E.: A feature set for cytometry on digitized microscopic images. Anal. Cell. Pathol. 25, 1–36 (2003)Google Scholar
  23. 23.
    Ruusuvuori, P., Seppala, J., Erkkila, T., Lehmussola, A., Puhakka, J., Yli-Harja, O.: Efficient automated method for image-based classification of microbial cells. In: Proceedings of the 19th International Conference on Pattern Recognition 2008 (ICPR 2008), pp. 1–4 (2008)Google Scholar
  24. 24.
    Viola P., Jones M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)CrossRefGoogle Scholar
  25. 25.
    Wong J.Y., Leach J.B., Brown X.Q.: Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surf. Sci. 570, 119–133 (2004)CrossRefGoogle Scholar
  26. 26.
    Yin, Z., Bise, R., Chen, M., Kanade T.: Cell segmentation in microscopy imagery using a bag of local Bayesian classifiers. In: From Nano to Macro: The 2010 IEEE International Symposium on Biomedical Imaging, pp. 125–128 (2010)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Diane H. Theriault
    • 1
  • Matthew L. Walker
    • 2
  • Joyce Y. Wong
    • 3
  • Margrit Betke
    • 1
  1. 1.Department of Computer ScienceBoston UniversityBostonUSA
  2. 2.Department of BiologyBoston UniversityBostonUSA
  3. 3.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations