Skip to main content
Log in

Optimizing PTZ camera calibration from two images

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of calibrating an active pan–tilt–zoom (PTZ) camera. In this regard, we make three main contributions: first, for the general camera rotation, we provide a novel solution that yields four independent constraints from only two images, by directly decomposing the infinite homography using a series of Givens rotations. Second, for a camera varying its focal length, we present a solution for the degenerate cases of pure pan and pure tilt that occur very frequently in practical applications of PTZ cameras. Third, we derive a new optimized error function for pure rotation or pan–tilt rotation, which plays a similar role as the epipolar constraint in a freely moving camera, in terms of characterizing the reprojection error of point correspondences. Our solutions and analysis are thoroughly validated and tested on both synthetic and real data, whereby the new geometric error function is shown to outperform existing methods in terms of accuracy and noise resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thirthala, S., Sinha, S.N., Pollefeys, M.: Calibration of pan– tilt–zoom (ptz) cameras and omni-directional cameras. In: Proc. CVPR, p. 1198 (2005)

  2. Kang, J., Cohen, I., Medioni, G.: Continuous tracking within and across camera streams. In: Proc. CVPR, pp. 267–272 (2003)

  3. Liu, Q., Kimber, D., Foote, J., Liao, C.: Multichannel video/audio acquisition for immersive conferencing. In: PROC. IEEE Int. Conf. Multimedia Expo. (ICME), pp. 45–48 (2003)

  4. Ou, S., Fagg, A.H., Riseman, E., Grupen, R.: An augmented virtual reality interface for assistive monitoring of smart spaces. In: Proc. Intl. Conf. Pervasive Computer Communications, pp. 33–42 (2004)

  5. Tsai R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  6. Zhang Z.: A flexible new technique for camera calibration. PAMI 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  7. Sturm, P.: Critical motion sequences for monocular self- calibration and uncalibrated euclidean reconstruction. In: Proc. CVPR, pp. 1100–1105 (1997)

  8. Faugeras, O., Luong, T., Maybank, S.: Camera self-calibration: theory and experiments. In: Proc. ECCV, pp. 321–334 (1992)

  9. Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In: Proc. ECCV, pp. 471–478 (1994)

  10. Knight, J., Zisserman, A., Reid, I.: Linear auto-calibration for ground plane motion. In: Proc. CVPR, pp. 503–510 (2003)

  11. Liebowitz, D., Zisserman, A.: Combining scene and auto-calibration constraints. In: Proc. ICCV, pp. 293–300 (1999)

  12. Heyden, A., Astrom, K.: Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In: Proc. CVPR, pp. 438–443 (1997)

  13. Triggs, B.: Autocalibration and the absolute quadric. In: Proc. CVPR, pp. 609–614 (1997)

  14. Remagnino P., Shihab A.I., Jones G.A.: Distributed intelligence for multi-camera visual surveillance. Pattern Recogn. 37(4), 675–689 (2004)

    Article  Google Scholar 

  15. Moons T., Gool L., Proesmans M., Pauwels E.: Affine reconstruction from perspective image pairs with a relative object–camera translation in between. PAMI 18(1), 77–83 (1996)

    Article  Google Scholar 

  16. Hartley R.I.: Self-calibration of stationary cameras. IJCV 22(1), 5–23 (1997)

    Article  Google Scholar 

  17. Hartley, R.I., Hayman, E., Agapito, L.D., Reid, I.: Camera calibration and the search for infinity. In: Proc. ICCV, pp. 510–517 (1999)

  18. Heyden, A., Astrom, K.: Flexible calibration: minimal cases for auto-calibration. In: Proc. ICCV, pp. 350–355 (1999)

  19. Kahl F., Triggs B., Åström K.: Critical motions for auto-calibration when some intrinsic parameters can vary. J. Math. Imaging Vis. 13(2), 131–146 (2000)

    Article  MATH  Google Scholar 

  20. Pollefeys M., Koch R., Gool L.V.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. IJCV 32(1), 7–25 (1999)

    Article  Google Scholar 

  21. Song K., Tai J.: Dynamic calibration of pan–tilt–zoom cameras for traffic monitoring. Syst. Man Cybern. Part B Cybern. 36(5), 1091–1103 (2006)

    Article  Google Scholar 

  22. Hartley, R.I., Zisserman A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

  23. Basu A., Ravi K.: Active camera calibration using pan, tilt and roll. Syst. Man Cybern. Part B Cybern. 27(3), 559–566 (1997)

    Article  Google Scholar 

  24. Frahm, J., Koch, R.: Camera calibration with known rotation. In: Proc. ICCV, pp. 1418–1425 (2003)

  25. Seo, Y., Hong, K.: About the self-calibration of a rotating and zooming camera: theory and practice. In: Proc. ICCV, pp. 183–189 (1999)

  26. Agapito, L. D., Hartley, R.: Linear calibration of a rotating and zooming cameras. In: Proc. CVPR, pp. 15–20 (1999)

  27. Agapito L.D., Hayman E., Reid I.: Self-calibration of rotating and zooming cameras. IJCV 45(2), 107–127 (2001)

    Article  MATH  Google Scholar 

  28. Triggs, B., McLauchlan, P., Hartley, R.I., Fitzgibbon, A.: Bundle adjustment—a modern synthesis. Vis. Algorithms Theory Pract. 298–373 (1999)

  29. Okatani, T., Deguchi, K.: Toward a statistically optimal method for estimating geometric relations from noisy data: cases of linear relations. In: In Proc. CVPR, vol. I, pp. 432–439 (2003)

  30. Zhang Z., Deriche R., Faugeras O.D., Luong Q.-T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell. 78(1–2), 87–119 (1995)

    Article  Google Scholar 

  31. Press W., Flannery B., Teukolsky S., Vetterling W.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  32. Golub G., Loan C.V.: Matrix Computations. John Hopkins Press, Baltimore (1989)

    MATH  Google Scholar 

  33. Willson, R., Shafer, S.: What is the center of the image? In: Proc. CVPR, pp. 670 –671 (1993)

  34. Tordoff B., Murray D.W.: The impact of radial distortion on the self-calibration of rotating cameras. CVIU 96(1), 17–34 (2004)

    Google Scholar 

  35. Zisserman A., Liebowitz D., Armstrong M.: Resolving ambiguities in auto-calibration. Philos. Trans. R. Soc. Lond. A 356(1740), 1193–1211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hartley, R.: Minimizing algebraic error in geometric estimation problems, pp. 469–476 (1998)

  37. Chum O., Pajdla T., Sturm P.: The geometric error for homographies. CVIU 97(1), 86–102 (2005)

    Google Scholar 

  38. Triggs B.:Autocalibration from planar scenes In: Proc. ECCV, pp. 89–105 (1998)

  39. Lowe D.G.: Distinctive image features from scale-invariant keypoints. IJCV 6(2), 91–110 (2004)

    Article  Google Scholar 

  40. Devernay F., Faugeras O.D.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran N. Junejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junejo, I.N., Foroosh, H. Optimizing PTZ camera calibration from two images. Machine Vision and Applications 23, 375–389 (2012). https://doi.org/10.1007/s00138-011-0326-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0326-z

Keywords

Navigation