Machine Vision and Applications

, Volume 23, Issue 2, pp 349–361 | Cite as

Machine vision scheme for stain-release evaluation using Gabor filters with optimized coefficients

  • Cui Mao
  • Arunkumar Gururajan
  • Hamed Sari-Sarraf
  • Eric Hequet
Original Paper

Abstract

This paper presents an efficient and practical approach for automatic, unsupervised object detection and segmentation in two-texture images based on the concept of Gabor filter optimization. The entire process occurs within a hierarchical framework and consists of the steps of detection, coarse segmentation, and fine segmentation. In the object detection step, the image is first processed using a Gabor filter bank. Then, the histograms of the filtered responses are analyzed using the scale-space approach to predict the presence/absence of an object in the target image. If the presence of an object is reported, the proposed approach proceeds to the coarse segmentation stage, wherein the best Gabor filter (among the bank of filters) is automatically chosen, and used to segment the image into two distinct regions. Finally, in the fine segmentation step, the coefficients of the best Gabor filter (output from the previous stage) are iteratively refined in order to further fine-tune and improve the segmentation map produced by the coarse segmentation step. In the validation study, the proposed approach is applied as part of a machine vision scheme with the goal of quantifying the stain-release property of fabrics. To that end, the presented hierarchical scheme is used to detect and segment stains on a sizeable set of digitized fabric images, and the performance evaluation of the detection, coarse segmentation, and fine segmentation steps is conducted using appropriate metrics. The promising nature of these results bears testimony to the efficacy of the proposed approach.

Keywords

Gabor filter Texture segmentation Filter-bank Histogram analysis Object detection Scale space Optimal thresholding Gabor filter optimization Fabric stain release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Escofet J., Navarro R., Millan M., Pladellorens J.: Detection of local defects in textile webs using Gabor filters. Opt. Eng. 37(8), 2297–2307 (1998)CrossRefGoogle Scholar
  2. 2.
    Serdaroglu A., Ertuzun A., Ercil A.: Defect detection in textile fabric images using wavelet transforms and independent component analysis. Pattern Recognit. Image Anal. 16(1), 61–64 (2006)CrossRefGoogle Scholar
  3. 3.
    Jain R., Rao A., Kayaalp A., Cole C.: Machine vision for semiconductor wafer inspection. In: Freeman, H. (eds) Machine Vision for Inspection and Measurement, pp. 283–314. Academic Press, New York (1989)Google Scholar
  4. 4.
    Kimmel R., Malladi R., Sochen N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 1405–1573 (2000)CrossRefGoogle Scholar
  5. 5.
    Wei D., Chan H.P., Helvie M.A., Sahiner B., Petrick N., Adler D.D., Goodsitt M.M.: Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis. Med. Phys. 22(9), 1501–1513 (1995)CrossRefGoogle Scholar
  6. 6.
    Tuceryan, M., Jain, A.K.: Texture Analysis. The Handbook of Pattern Recognition and Computer Vision, pp. 207–248. World Scientific Publishing Co., NJ (1998)Google Scholar
  7. 7.
    Daugman J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160–1169 (1985)CrossRefGoogle Scholar
  8. 8.
    Dunn D., Higgins W.E.: Texture segmentation using 2-D Gabor elementary functions. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 130–149 (1994)CrossRefGoogle Scholar
  9. 9.
    Dunn D.: Optimal Gabor filters for texture segmentation. IEEE Trans. Image Process. 4(7), 947–964 (1995)CrossRefGoogle Scholar
  10. 10.
    Weldon, T.P., Higgins, W.E., Dunn, D.: Efficient Gabor filter design using Rician output statistics. In: IEEE International Symposium on Circuits and Systems, vol. 3, London, England, 30 May–2 June 1994Google Scholar
  11. 11.
    Bovik A.C.: Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Trans. Signal Process. 39(9), 2025–2043 (1991)CrossRefGoogle Scholar
  12. 12.
    Ahmadian, A., Mostafa, A.: An efficient texture classification algorithm using Gabor wavelet. In: Proceedings of IEEE EMBS Cancun, Mexico, September 17–21, 2003Google Scholar
  13. 13.
    Kumar A., Pang G.K.H.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 38(2), 425–440 (2002)CrossRefGoogle Scholar
  14. 14.
    Cohen H.A., You J.: A multi-scale texture classifier based on multiresolution ‘tuned’ mask. Pattern Recognit. Lett. 13, 599–604 (1992)CrossRefGoogle Scholar
  15. 15.
    You J., Cohen H.A.: Classification and segmentation of rotated and scaled textured images using texture ‘tuned’ mask. Pattern Recogni. Lett. 26, 245–258 (1993)CrossRefGoogle Scholar
  16. 16.
    Randen, T., Husoy, J.H.: Texture segmentation using filters with optimized energy separation. IEEE Trans. Image Process. 8(4) (1999)Google Scholar
  17. 17.
    Duda R.O., Hart P.E., Stork D.G.: Pattern Classification. Wiley Interscience, New York (2001)MATHGoogle Scholar
  18. 18.
    Carlotto M.J.: Histogram analysis using a scale-space approach. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 121–129 (1987)CrossRefGoogle Scholar
  19. 19.
    Shi J., Malik J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  20. 20.
    Xiao J., Shah M.: Motion layer extraction in the presence of occlusion using graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1644–1659 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhang W., Cao X., Qu Y., Hou Y., Zhao H., Zhang C.: Detecting and extracting the photo composites using planar homography and graph cut. IEEE Trans. Inform. Forensic Secur. 99, 544–555 (2010)CrossRefGoogle Scholar
  22. 22.
    AATCC: Test Method 130-1995. AATCC Technical Manual, pp. 217–219 (1995)Google Scholar
  23. 23.
    Xu B., Reed J.A.: Instrumental evaluation of stain release in fabrics. J. Text. Inst. 87(1), 203–211 (1996)CrossRefGoogle Scholar
  24. 24.
    Gururajan, A., Sari-Sarraf, H., Hequet, E.: A statistical approach to defect detection and multi-scale localization in two-texture images. Opt. Eng. 47, 027202-1–027202-10 (2008)Google Scholar
  25. 25.
    Gururajan A., Hequet E., Sari-Sarraf H.: Objective evaluation of soil release in fabrics. Text. Res. J. 78(9), 782–795 (2008)CrossRefGoogle Scholar
  26. 26.
    Papoulis A.: Probability, Random Variables and Stochastic Processes, 3rd edn. McGraw-Hill, New York (1991)Google Scholar
  27. 27.
    Whalen A.D.: Detection of Signals in Noise. Academic Press, New York (1971)Google Scholar
  28. 28.
    Unser M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mathews J.H., Fink K.K.: Numerical Methods Using Matlab, 4th edn. Prentice Hall, NJ (2004)Google Scholar
  30. 30.
    Randen T., Husoy J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Recognit. Mach. Intell. 21(4), 291–310 (1999)CrossRefGoogle Scholar
  31. 31.
    Cohen H.A., You J.: A multi-scale texture classfier based on multiresolution tuned mask. Pattern Recognit. Lett. 13, 599–604 (1992)CrossRefGoogle Scholar
  32. 32.
    You J., Cohen H. A.: Classification and segmentation of rotated and scaled textured images using texture ‘tuned’ mask. Pattern Recognit. Lett. 26, 245–258 (1993)Google Scholar
  33. 33.
    Huo Z. M., Giger M. L.: Evaluation of an automatic segmentation method based on performances of an automatic classification method. Proc. SPIE 3981, 16–21 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Cui Mao
    • 1
  • Arunkumar Gururajan
    • 1
    • 2
  • Hamed Sari-Sarraf
    • 1
  • Eric Hequet
    • 2
  1. 1.Department of Electrical and Computer EngineeringTexas Tech UniversityLubbockUSA
  2. 2.Fiber and Biopolymer Research InstituteTexas Tech UniversityLubbockUSA

Personalised recommendations