Machine Vision and Applications

, Volume 23, Issue 2, pp 349–361

Machine vision scheme for stain-release evaluation using Gabor filters with optimized coefficients

  • Cui Mao
  • Arunkumar Gururajan
  • Hamed Sari-Sarraf
  • Eric Hequet
Original Paper

DOI: 10.1007/s00138-010-0295-7

Cite this article as:
Mao, C., Gururajan, A., Sari-Sarraf, H. et al. Machine Vision and Applications (2012) 23: 349. doi:10.1007/s00138-010-0295-7

Abstract

This paper presents an efficient and practical approach for automatic, unsupervised object detection and segmentation in two-texture images based on the concept of Gabor filter optimization. The entire process occurs within a hierarchical framework and consists of the steps of detection, coarse segmentation, and fine segmentation. In the object detection step, the image is first processed using a Gabor filter bank. Then, the histograms of the filtered responses are analyzed using the scale-space approach to predict the presence/absence of an object in the target image. If the presence of an object is reported, the proposed approach proceeds to the coarse segmentation stage, wherein the best Gabor filter (among the bank of filters) is automatically chosen, and used to segment the image into two distinct regions. Finally, in the fine segmentation step, the coefficients of the best Gabor filter (output from the previous stage) are iteratively refined in order to further fine-tune and improve the segmentation map produced by the coarse segmentation step. In the validation study, the proposed approach is applied as part of a machine vision scheme with the goal of quantifying the stain-release property of fabrics. To that end, the presented hierarchical scheme is used to detect and segment stains on a sizeable set of digitized fabric images, and the performance evaluation of the detection, coarse segmentation, and fine segmentation steps is conducted using appropriate metrics. The promising nature of these results bears testimony to the efficacy of the proposed approach.

Keywords

Gabor filter Texture segmentation Filter-bank Histogram analysis Object detection Scale space Optimal thresholding Gabor filter optimization Fabric stain release 

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Cui Mao
    • 1
  • Arunkumar Gururajan
    • 1
    • 2
  • Hamed Sari-Sarraf
    • 1
  • Eric Hequet
    • 2
  1. 1.Department of Electrical and Computer EngineeringTexas Tech UniversityLubbockUSA
  2. 2.Fiber and Biopolymer Research InstituteTexas Tech UniversityLubbockUSA

Personalised recommendations