Machine Vision and Applications

, Volume 23, Issue 1, pp 123–133 | Cite as

Automatic real-time road marking recognition using a feature driven approach

  • Alireza Kheyrollahi
  • Toby P. Breckon
Original Paper


Automatic road marking recognition is a key problem within the domain of automotive vision that lends support to both autonomous urban driving and augmented driver assistance such as situationally aware navigation systems. Here we propose an approach to this problem based on the extraction of robust road marking features via a novel pipeline of inverse perspective mapping and multi-level binarisation. A trained classifier combined with additional rule-based post-processing then facilitates the real-time delivery of road marking information as required. The approach is shown to operate successfully over a range of lighting, weather and road surface conditions.


Computer vision Mobile robotics Road marking recognition Vanishing point detection Intelligent vehicles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop R.: Intelligent vehicle applications worldwide. Intell. Syst. Appl. IEEE 15(1), 78–81 (2000)CrossRefGoogle Scholar
  2. 2.
    Campbell N.W., Pout M.R., Priestly M.D.J., Dagless E.L., Thomas B.T.: Autonomous road vehicle navigation. Eng. Appl. Artif. Intell. 7(2), 177–190 (1994)CrossRefGoogle Scholar
  3. 3.
    Maurer, M.. Dickmanns, E.D.: A system architecture for autonomous visual road vehicle guidance. ITSC 97. IEEE Conference on Intelligent Transportation System, pp. 578–583 (1997)Google Scholar
  4. 4.
    Hoffmann, G.M., Tomlin, C.J., Montemerlo, F., Thrun, S.: Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing. American Control Conference, 2007 ACC’07, pp. 2296–2301 (2007)Google Scholar
  5. 5.
    Broggi, A.: Robust real-time lane and road detection in critical shadow conditions. In: Proceedings of International Symposium on Computer Vision, pp. 353–358 (1995)Google Scholar
  6. 6.
    Charbonnier, P., Diebolt, F., Guillard, Y., Peyret, F.: Road markings recognition using image processing. In: IEEE Conference on Intelligent Transportation System, ITSC 97, pp. 912–917 (1997)Google Scholar
  7. 7.
    Rebut J., Bensrhair A., Toulminet G.: Image segmentation and pattern recognition for road marking analysis. IEEE Int. Symp. Ind. Electron. 1(4–7), 727–732 (2004)Google Scholar
  8. 8.
    Barnard S.T.: Interpreting perspective images. Artif. Intell. 21, 435–462 (1983)CrossRefGoogle Scholar
  9. 9.
    Magee M.J., Aggmal J.K.: Determining vanishing points from perspective images. Comput. Vis. Graphics Image Processing 26, 256–267 (1984)CrossRefGoogle Scholar
  10. 10.
    Quan L., Mohr R.: Determining perspective structures using hierarchical Hough transform. Pattern Recognit. Lett. 9(44), 279–286 (1989) ElsevierzbMATHCrossRefGoogle Scholar
  11. 11.
    Lutton E., Maitre H., Lopez-Krahe J.: Contribution to the determination of vanishing points using Hough transform. Pattern Anal. Mach. Intell. 16(4), 430–438 (1994)CrossRefGoogle Scholar
  12. 12.
    Cantoni, V., Lombardi, L., Porta, M., Sicard, N.: Vanishing point detection: representation analysis and new approaches. In: Proceedings of 11th International Conference on Image Analysis and Processing Volume, Issue, pp. 90–94 (2001)Google Scholar
  13. 13.
    Almansa A., Desolneux A., Vamech S.: Vanishing point detection without any a priori information. Pattern Anal. Mach. Intell. 25(4), 502–507 (2003)CrossRefGoogle Scholar
  14. 14.
    Nakatani, H., Kimura, S., Saito, O.: Extraction of vanishing point and its application to scene analysis based on image sequence. In: Proceedings of the 5th International Pattern Recognition Conference (1980)Google Scholar
  15. 15.
    Matessi, A., Lombardi, L.: Vanishing point detection in the hough transform space. In: Proceedings of the Fifth International Euro-Par Conference, Tolouse, France, pp. 987–994 (1999)Google Scholar
  16. 16.
    McLean G.f., Kotturi D.: Vanishing point detection by line clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(11), 1090–1095 (1995)CrossRefGoogle Scholar
  17. 17.
    Pratt W.K.: Digital Image Processing, 3rd edn. John, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Wu, S.T., Marquez, M.R.G.: A non-self-intersection Douglas-Peucker algorithm. In: Proc. XVI Brazilian Symposium on Computer Graphics and Image Processing, pp. 60–66 (2003)Google Scholar
  19. 19.
    Sebe N., Lew M.S.: Robust Computer Vision: Theory and Applications. Kluwer, Norwell (2003)zbMATHGoogle Scholar
  20. 20.
    Trier Ø.D., Jain A.K., Taxt T.: Feature extraction methods for character recognition—a survey. Pattern Recognit. 29(4), 641–662 (1996)CrossRefGoogle Scholar
  21. 21.
    Bishop C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  22. 22.
    Kastrinaki V., Zervakis M., Kalaitzakis K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21, 359–381 (2003)CrossRefGoogle Scholar
  23. 23.
    Forsyth D., Ponce J.: Computer Vision—A Modern Approach. Prentice-Hall, New Jersey (2003)Google Scholar
  24. 24.
    Bertozzi M., Broggi A., Fascioli A.: Stereo inverse perspective mapping: theory and applications. Image Vis. Comput. J. 8(16), 585–590 (1998)CrossRefGoogle Scholar
  25. 25.
    Hu M.-K.: Visual pattern recognition by moment invatiants. IRE. Tran. Inf. Theory 8, 179–187 (1962)zbMATHGoogle Scholar
  26. 26.
    Bishop C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  27. 27.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the ICNN, San Francisco, pp. 586–591 (1993)Google Scholar
  28. 28.
    Kundu A., He Y., Bahl P.: Recognition of hand-written word: first and second order hidden Markov model based approach. Pattern Recognit. 22(3), 283–297 (1989)CrossRefGoogle Scholar
  29. 29.
    Li, Y., He, K., Jia, P.: Road markers recognition based on shape information. In: Proc. IEEE Int. Symp. on Intelligent Vehicles Symposium, pp. 117–122 (2007)Google Scholar
  30. 30.
    Noda, M., Takahashi, T., Deguchi, D., Ide, I., Murase, H., Kojima, Y., Naito, T.: Recognition of road markings from in-vehicle camera images by a generative learning method. In: Proc. IAPR Conf. on Machine Vision Applications, 15–5 (2009)Google Scholar
  31. 31.
    Turk M., Pentland A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  32. 32.
    Canny J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Applied Mathematics and Computing Group, School of EngineeringCranfield UniversityBedfordshireUK

Personalised recommendations