Skip to main content
Log in

Seeking multi-thresholds for image segmentation with Learning Automata

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper explores the use of the Learning Automata (LA) algorithm to compute threshold selection for image segmentation as it is a critical preprocessing step for image analysis, pattern recognition and computer vision. LA is a heuristic method which is able to solve complex optimization problems with interesting results in parameter estimation. Despite other techniques commonly seek through the parameter map, LA explores in the probability space providing appropriate convergence properties and robustness. The segmentation task is therefore considered as an optimization problem and the LA is used to generate the image multi-threshold separation. In this approach, one 1-D histogram of a given image is approximated through a Gaussian mixture model whose parameters are calculated using the LA algorithm. Each Gaussian function approximating the histogram represents a pixel class and therefore a threshold point. The method shows fast convergence avoiding the typical sensitivity to initial conditions such as the Expectation- Maximization (EM) algorithm or the complex time-consuming computations commonly found in gradient methods. Experimental results demonstrate the algorithm’s ability to perform automatic multi-threshold selection and show interesting advantages as it is compared to other algorithms solving the same task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abak, T., Baris, U., Sankur, B.: The performance of thresholding algorithms for optical character recognition. In: Proceedings of International Conference on Document Analytical Recognition, pp. 697–700 (1997)

  2. Kamel M., Zhao A.: Extraction of binary character/graphics images from grayscale document images. Graph Models Image Process. 55(3), 203–217 (1993)

    Article  Google Scholar 

  3. Trier O.D., Jain A.K.: Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1191–1201 (1995)

    Article  Google Scholar 

  4. Bhanu B.: Automatic target recognition: state of the art survey. IEEE Trans. Aerosp. Electron. Syst. 22, 364–379 (1986)

    Article  Google Scholar 

  5. Sezgin, M., Sankur, B.: Comparison of thresholding methods for non-destructive testing applications. In: IEEE International Conference on Image Processing, pp. 764–767 (2001)

  6. Sezgin M., Tasaltin R.: A new dichotomization technique to multilevel thresholding devoted to inspection applications. Pattern Recognit. Lett. 21(2), 151–161 (2000)

    Article  Google Scholar 

  7. Guo R., Pandit S.M.: Automatic threshold selection based on histogram modes and discriminant criterion. Mach. Vis. Appl. 10, 331–338 (1998)

    Article  Google Scholar 

  8. Pal N.R., Pal S.K.: A review on image segmentation techniques. Pattern Recognit. 26, 1277–1294 (1993)

    Article  Google Scholar 

  9. Shaoo P.K., Soltani S., Wong A.K.C., Chen Y.C: Survey: a survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  10. Snyder W., Bilbro G., Logenthiran A., Rajala S.: Optimal thresholding: a new approach. Pattern Recognit. Lett. 11, 803–810 (1990)

    Article  MATH  Google Scholar 

  11. Chen S., Wang M.: Seeking multi-thresholds directly from support vectors for image segmentation. Neurocomputing 67(4), 335–344 (2005)

    Article  Google Scholar 

  12. Chih-Chih L.: A novel image segmentation approach based on particle swarm optimization. IEICE Trans. Fundam. 89(1), 324–327 (2006)

    Google Scholar 

  13. Böhning D., Seidel W.: Recent developments in mixture models. Comput. Stat. Data Anal. 41, 349–357 (2003)

    Article  Google Scholar 

  14. Gupta L., Sortrakul T.: A Gaussian-mixture-based image segmentation algorithm. Pattern Recognit. 31(3), 315–325 (1998)

    Article  Google Scholar 

  15. Dempster A.P., Laird A.P., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Zhang Z., Chen C., Sun J., Chan L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognit. 36, 1973–1983 (2003)

    Article  MATH  Google Scholar 

  17. Park H., Amari S., Fukumizu K.: Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw. 13, 755–764 (2000)

    Article  Google Scholar 

  18. Redner R.A., Walker H.F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26((2), 195–239 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Park H., Ozeki T.: Singularity and slow Convergence of the EM algorithm for Gaussian mixtures. Neural Process Lett. 29, 45–59 (2009)

    Article  Google Scholar 

  20. Ma J., Xu L., Jordan M.I.: Asymptotic convergence rate of the EMalgorithm for Gaussian mixtures. Neural Comput. 12, 2881–2907 (2000)

    Article  Google Scholar 

  21. Xu L., Jordan M.I.: On convergence properties for the EM algorithm. Neural Comput. 8, 129–151 (1996)

    Article  Google Scholar 

  22. Xu L., Jordan M.I.: On corvengence of the EM algorithm for Gaussian mixtures. Neural Comput. 8(1), 129–151 (1996)

    Article  Google Scholar 

  23. Olsson R., Petersen K., Lehn-Schiøler T.: State-space models: from the EM algorithm to a gradient approach. Neural Comput. 19(4), 1097–1111 (2008)

    Article  Google Scholar 

  24. Narendra K.S., Thathachar M.A.L.: Learning Automata: An Introduction. Prentice-Hall, London (1989)

    Google Scholar 

  25. Najim K., Poznyak A.S: Learning Automata—Theory and Applications. Pergamon Press, Oxford (1994)

    Google Scholar 

  26. Seyed-Hamid Z.: Learning automata based classifier. Pattern Recognit. Lett. 29, 40–48 (2008)

    Article  Google Scholar 

  27. Zeng X., Zhou J., Vasseur C.: A strategy for controlling non-linear systems using a learning automaton. Automatica 36, 1517–1524 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Howell M., Gordon T.: Continuous action reinforcement learning automata and their application to adaptive digital filter design. Eng. Appl. Artif. Intell. 14, 549–561 (2001)

    Article  Google Scholar 

  29. Wu Q.H.: Learning coordinated control of power systems using inter-connected learning automata. Int. J. Electr. Power Energy Syst. 17, 91–99 (1995)

    Article  Google Scholar 

  30. Thathachar M.A.L., Sastry P.S.: Varieties of learning automata: an overview. IEEE Trans. Systems. Man Cybernet. Part B Cybernet. 32, 711–722 (2002)

    Article  Google Scholar 

  31. Zeng X., Liu Z.: A learning automaton based algorithm for optimization of continuous complex function. Inf. Sci. 174, 165–175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Beygi H., Meybodi M.R.: A new action-set learning automaton for function optimization. Int. J. Franklin Inst. 343, 27–47 (2006)

    Article  Google Scholar 

  33. Frost, G.P.: Stochastic optimization of vehicle suspension control systems via learning automata. Ph.D. Thesis, Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough (1998)

  34. Howell M.N., Frost G.P., Gordon T.J., Wu Q.H.: Continuous action reinforcement learning applied to vehicle suspension control. Mechatronics 7(3), 263–276 (1997)

    Article  Google Scholar 

  35. Howell M.N., Best M.C.: On-line PID tuning for engine idle-speed control using continuous action reinforcement learning automata. Control Eng. Pract. 8, 147–154 (2000)

    Article  Google Scholar 

  36. Kashki, M., Abdel-Magid Y., Abido, M.: A reinforcement learning automata optimization approach for optimum tuning of PID controller in AVR system. In: Huang, D.-S., et al. (eds.) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, ICIC 2008, LNAI 5227, pp. 684–692 (2008)

  37. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison Wesley, Reading (1992)

    Google Scholar 

  38. Baştürk A., Günay E.: Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm. Expert Syst. Appl. 36(8), 2645–2650 (2009)

    Article  Google Scholar 

  39. Lai C.-C., Tseng D.-C.: An optimal L-filter for reducing blocking artifacts using genetic algorithms. Signal Process. 81(7), 1525–1535 (2001)

    Article  MATH  Google Scholar 

  40. Tseng D.-C., Lai C.-C.: A genetic algorithm for MRF-based segmentation of multispectral textured images. Pattern Recognit. Lett. 20(14), 1499–1510 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zaldivar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas, E., Zaldivar, D. & Pérez-Cisneros, M. Seeking multi-thresholds for image segmentation with Learning Automata. Machine Vision and Applications 22, 805–818 (2011). https://doi.org/10.1007/s00138-010-0249-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-010-0249-0

Keywords

Navigation