Skip to main content
Log in

Non-parametric statistical background modeling for efficient foreground region detection

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Most methods for foreground region detection in videos are challenged by the presence of quasi-stationary backgrounds—flickering monitors, waving tree branches, moving water surfaces or rain. Additional difficulties are caused by camera shake or by the presence of moving objects in every image. The contribution of this paper is to propose a scene-independent and non-parametric modeling technique which covers most of the above scenarios. First, an adaptive statistical method, called adaptive kernel density estimation (AKDE), is proposed as a base-line system that addresses the scene dependence issue. After investigating its performance we introduce a novel general statistical technique, called recursive modeling (RM). The RM overcomes the weaknesses of the AKDE in modeling slow changes in the background. The performance of the RM is evaluated asymptotically and compared with the base-line system (AKDE). A wide range of quantitative and qualitative experiments is performed to compare the proposed RM with the base-line system and existing algorithms. Finally, a comparison of various background modeling systems is presented as well as a discussion on the suitability of each technique for different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Criminisi, C., Gross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: Proceedings of the CVPR pp. 17–22 (2006)

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  3. Elgammal, A., Duraiswami, R., Davis, L.S.: Efficient computation of kernel density estimation using fast Gauss transform with application for segmentation and tracking. In: Proceedings of the 2nd IEEE International Workshop on Statistical and Computational Theories of Vision (2001)

  4. Elgammal, A., Duraiswami, R., Davis, L.S.: Efficient non-parametric adaptive color modeling using fast Gauss transform. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2001)

  5. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 90, 1151–1163 (2002)

    Article  Google Scholar 

  6. Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach. In: Annual Conference on Uncertainty in Artificial Intelligence, pp. 175–181 (1997)

  7. Hsu, Y., Nagel, H., Rekers, G.: New likelihood test methods for change detection in image sequences. Comput. Vis. Graph. Image Process. 26, 73–106 (1984)

    Article  Google Scholar 

  8. Indupalli, S., Ali, M., Boufama, B.: A novel clustering-based method for adaptive background segmentation. In: Proceedings of the Computer and Robot Vision, pp. 37–43 (2006)

  9. Karman, K.P., von Brandt, A.: Moving object recognition using an adaptive background memory. In: Proc. Time-varying Image Processing and Moving Object Recognition (1990)

  10. Karman, K.P., von Brandt, A.: Moving object segmentation based on adaptive reference images. In: Signal Processing: Theories and Applications, pp. 951–954 (1990)

  11. Kim, K., Harwood, D., Davis, L.S.: Background updating for visual surveillance. Proc. Int. Symp. Vis. Comput. 1, 337–346 (2005)

    Google Scholar 

  12. Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B., Russel, S.: Towards Robust Automatic Traffic Scene Analysis in Real-Time. In proceedings of ICPR 1, 126–131 (1994)

    Google Scholar 

  13. Lee, D.S.: Effective Gaussian mixture learning for video background subtraction. IEEE Trans. PAMI 27(5), 827–832 (2005)

    Google Scholar 

  14. Li, L., Huang, W., Gu, I., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13(11), 1459–1472 (2004)

    Article  Google Scholar 

  15. Matsuyama, T., Ohya, T., Habe, H.: Background subtraction for non-stationary scenes. In: Proceedings of Asian Conference on Computer Vision, pp. 662–667 (2000)

  16. McKenna, S., Raja, Y., Gong, S.: Object tracking using adaptive color mixture models. Proc. Asian Conf. Comput. Vis. 1, 615–622 (1998)

    Google Scholar 

  17. McKenna, S., Raja, Y., Gong, S.: Tracking colour objects using adaptive mixture models. Image Vis. Comput. 17, 223–229 (1999)

    Article  Google Scholar 

  18. Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. Proc. CVPR 2, 302–309 (2004)

    Google Scholar 

  19. Paragios, N., Ramesh, V.: A MRF-based approach for real-time subway monitoring. IEEE Trans. PAMI 1, 1030–1040 (2001)

    Google Scholar 

  20. Pless, R., Brodsky, T., Aloimonos, Y.: Detecting independent motion: the statistics of temporal continuity. IEEE Trans. PAMI 22(8), 68–73 (2000)

    Google Scholar 

  21. Pless, R., Larson, J., Siebers, S., Westover, B.: Evaluation of local models of dynamic backgrounds. Proc. CVPR 2, 73–78 (2003)

    Google Scholar 

  22. Rittscher, J., Kato, J., Joga, S., Blake, A.: A probabilistic background model for tracking. Proc. 6th Eur. Conf. Comput. Vision 1843, 336–350 (2000)

    Google Scholar 

  23. Sheikh, Y., Shah, M.: Bayesian object detection in dynamic scenes. Proc. CVPR 1, 74–79 (2005)

    Google Scholar 

  24. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. Proc. CVPR 2, 246–252 (1999)

    Google Scholar 

  25. Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking. IEEE Trans. PAMI 22(8), 747–757 (2000)

    Google Scholar 

  26. Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., Buhmann, J.: A probabilistic background model for tracking. In Proceedings of ICCV, pp. 294–301 (2001)

  27. Tavakkoli, A., Nicolescu, M., Bebis, G.: Automatic robust background modeling using multivariate non-parametric kernel density estimation for visual surveillance. In: Proceedings of the International Symposium on Visual Computing, LNSC, vol. 3804, pp. 363–370 (2005)

  28. Tavakkoli, A., Nicolescu, M., Bebis, G.: Automatic statistical object detection for visual surveillance. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 144–148 (2006)

  29. Tavakkoli, A., Nicolescu, M., Bebis, G.: Robust recursive learning for foreground region detection in videos with quasi-stationary backgrounds. In proceedings of 18th International Conference on Pattern Recognition (2006)

  30. Totozafiny, T., Patrouix, O., Luthon, F., Coutllier, J.: Dynamic background segmentation for remote reference image updating within motion detection JPG2000. In: Proceedings of the International Symposium on Industrial Electronics, pp. 505–510 (2006)

  31. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. Proc. ICCV 1, 255–261 (1999)

    Google Scholar 

  32. Wern, C., Azarbayejani, A., Darrel, T., Petland, A.: Pfinder: real-time tracking of human body. IEEE Trans. PAMI 19(7), 780–785 (1997)

    Google Scholar 

  33. Wixson, L.: Detecting salient motion by accumulating directionary-consistent flow. IEEE Trans. Pattern Anal. Mach. Intell. 22, 774–780 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Tavakkoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakkoli, A., Nicolescu, M., Bebis, G. et al. Non-parametric statistical background modeling for efficient foreground region detection. Machine Vision and Applications 20, 395–409 (2009). https://doi.org/10.1007/s00138-008-0134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0134-2

Keywords

Navigation