Skip to main content
Log in

Pose estimation for objects with planar surfaces using eigenimage and range data analysis

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper we present a novel method for estimating the object pose for 3D objects with well-defined planar surfaces. Specifically, we investigate the feasibility of estimating the object pose using an approach that combines the standard eigenspace analysis technique with range data analysis. In this sense, eigenspace analysis was employed to constrain one object rotation and reject surfaces that are not compatible with a model object. The remaining two object rotations are estimated by computing the normal to the surface from the range data. The proposed pose estimation scheme has been successfully applied to scenes defined by polyhedral objects and experimental results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguado A.S., Montiel E. and Nixon M.S. (2002). Invariant characterisation of the Hough transform for pose estimation of arbitrary shapes. Pattern Recogn. 35(5): 1083–1109

    Article  MATH  Google Scholar 

  2. Arun K.S., Huang T.S. and Blostein S.D. (1987). Least-square fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5): 698–700

    Google Scholar 

  3. Ansar A. and Daniilidis K. (2003). Linear pose estimation from points or lines. IEEE Trans. Pattern Anal. Mach. Intell. 25(5): 578–589

    Article  Google Scholar 

  4. Bhanu B. (1987). Representation and shape matching of 3-D points. IEEE Trans. Pattern Anal. Mach. Intell. 6(3): 340–351

    Google Scholar 

  5. Black M.J. and Jepson A.D. (1998). EigenTracking: Robust matching and tracking of articulated objects using a view-based representation. Int. J. Comp. Vis. 26(1): 63–84

    Article  Google Scholar 

  6. Blane M., Lei Z., Civi H. and Cooper D.B. (2000). The 3L algorithm for fitting implicit polynomial curves and surfaces to data. IEEE Trans. Pattern Anal. Mach. Intell. 22(3): 298–313

    Article  Google Scholar 

  7. Bolles R.C. and Horaud P. (1986). 3DPO: A three dimensional part orientation system. Int. J. Robotics Res. 5(3): 3–26

    Article  Google Scholar 

  8. Brox, T., Rosenhahn, B., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose estimation. In: DAGM-Symposium 2005, Vienna, Austria, pp. 109–116 (2005)

  9. Campbell R. and Flynn P. (2001). A survey of free-form object representation and recognition techniques. Comput. Vis. Image Understand. 81(2): 166–210

    Article  MATH  Google Scholar 

  10. Canny J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6): 698–700

    Google Scholar 

  11. Edwards, J.: An active, appearance-based approach to the pose estimation of complex objects. In: Proceeings of the IEEE Intelligent Robots and Systems Conference, Osaka, Japan, pp. 1458–1465 (1996)

  12. Faugeras O.D. and Hebert M. (1986). The representation, recognition and locating of 3-D objects. Int. J. Robotics Res. 5(3): 27–52

    Article  Google Scholar 

  13. Fischler M.A. and Bolles R.C. (1981). Random shape consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6): 351–395

    Article  MathSciNet  Google Scholar 

  14. Forsyth D., Mundy J.L., Zisserman A., Coelho C., Heller A. and Rothwell C. (1991). Invariant descriptors for 3-D object recognition and pose. IEEE Trans. Pattern Anal. Mach. Intell. 13(10): 971–991

    Article  Google Scholar 

  15. Fortuna, J., Schuurman, D., Capson, D.: A comparison of PCA and ICA for object recognition under varying illumination. In: International Conference on Pattern Recognition, vol. 3, pp. 11–16, Quebec City, Canada (2002)

  16. Ghita O. and Whelan P.F. (2001). A video-rate range sensor based on depth from defocus. Optics Laser Technol. 33(3): 167–176

    Article  Google Scholar 

  17. Ghita O. and Whelan P.F. (2002). Computational approach for edge linking. J. Electron. Imaging 11(4): 479–485

    Article  Google Scholar 

  18. Horaud R., Conio B., Leboulleux O. and Lacolle B. (1989). An analytic solution for the perspective 4-point problem in computer vision. Graph. Image Process. 47(1): 33–44

    Article  Google Scholar 

  19. Johnson A. and Hebert M. (1999). Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5): 433–449

    Article  Google Scholar 

  20. Krumm, J.: Eigenfeatures for planar pose measurement of partially occluded objects. In: Proceedins of the Computer Vision and Pattern Recognition, San Francisco, USA, pp. 55–60 (1996)

  21. Lancaster P. and Salkauskas K. (1986). Curve and Surface Fitting: an Introduction. Academic, London

    MATH  Google Scholar 

  22. Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using kernel based Fisher discriminant analysis. In: IEEE International Conference on Automatic Face and Gesture Recognition, Washington, USA, 2002

  23. Marr D. and Hildreth E. (1980). Theory of edge detection. Proc. R. Soc. B Lond. 207: 187–217

    Article  Google Scholar 

  24. Mittrapiyanuruk, P., DeSouza, G.N., Kak, A.C.: Calculating the 3D pose of rigid objects using active appearance models. In: International Conference in Robotics and Automation, New Orleans, USA (2004)

  25. Moghaddam B. and Pentland A. (1997). Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7): 971–991

    Article  Google Scholar 

  26. Murase H. and Nayar S.K. (1995). Visual learning and recognition of 3-D objects from appearance. Int. J. Comp. Vis. 14: 5–24

    Article  Google Scholar 

  27. Nash, J.C.: Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd edn. Bristol, England, Adam Hilger (1990)

    MATH  Google Scholar 

  28. Phong Q.T., Horaud R., Yassine A. and Pham D.T. (1995). Object pose from 2-D to 3-D point and line correspondencies. Int. J. Comp. Vis. 15(3): 225–243

    Article  Google Scholar 

  29. Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. (1992). Numerical recipes in C. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Rosenhahn B., Perwass C. and Sommer G. (2005). Pose estimation of free-form contours. Int. J. Comp. Vis. (IJCV) 62(3): 267–289

    Article  Google Scholar 

  31. Shen J. and Castan S. (1992). An optimal operator for step edge detection. CVGIP: Graph Models Image Process 54(2): 112–133

    Article  Google Scholar 

  32. Sirovich, L., Kirby, M.: A low-dimensional procedure for characterization of human faces. J. Opt. Soc. Am. 4(3), 112–133

  33. Tarel J.P. and Cooper D.B. (2000). The complex representation of algebraic curves and its simple exploitation for pose estimation and invariant recognition. IEEE Trans. Pattern Anal. Mach. Intell. 22(7): 663–674

    Article  Google Scholar 

  34. Turk M. and Pentland A. (1991). Eigenfaces for recognition. J. Cognit. Neurosci. 3: 71–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Ghita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghita, O., Whelan, P.F., Vernon, D. et al. Pose estimation for objects with planar surfaces using eigenimage and range data analysis. Machine Vision and Applications 18, 355–365 (2007). https://doi.org/10.1007/s00138-007-0067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0067-1

Keywords

Navigation