Skip to main content
Log in

Three-dimensional view-invariant face recognition using a hierarchical pose-normalization strategy

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Face recognition from three-dimensional (3D) shape data has been proposed as a method of biometric identification as a way of either supplanting or reinforcing a two-dimensional approach. This paper presents a 3D face recognition system capable of recognizing the identity of an individual from a 3D facial scan in any pose across the view-sphere, by suitably comparing it with a set of models (all in frontal pose) stored in a database. The system makes use of only 3D shape data, ignoring textural information completely. Firstly, we propose a generic learning strategy using support vector regression [Burges, Data Mining Knowl Discov 2(2): 121–167, 1998] to estimate the approximate pose of a 3D head. The support vector machine (SVM) is trained on range images in several poses belonging to only a small set of individuals and is able to coarsely estimate the pose of any unseen facial scan. Secondly, we propose a hierarchical two-step strategy to normalize a facial scan to a nearly frontal pose before performing any recognition. The first step consists of either a coarse normalization making use of facial features or the generic learning algorithm using the SVM. This is followed by an iterative technique to refine the alignment to the frontal pose, which is basically an improved form of the Iterated Closest Point Algorithm [Besl and Mckay, IEEE Trans Pattern Anal Mach Intell 14(2):239–256, 1992]. The latter step produces a residual error value, which can be used as a metric to gauge the similarity between two faces. Our two-step approach is experimentally shown to outperform both of the individual normalization methods in terms of recognition rates, over a very wide range of facial poses. Our strategy has been tested on a large database of 3D facial scans in which the training and test images of each individual were acquired at significantly different times, unlike all except two of the existing 3D face recognition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Daugman J. (1997). Face and gesture recognition: overview. IEEE Trans. Pattern Anal. Mach. Intell. 19(7):675–676

    Article  Google Scholar 

  2. Burges C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discov. 2(2):121–167

    Article  Google Scholar 

  3. Besl P., McKay N. (1992). A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2):239–256

    Article  Google Scholar 

  4. Hesher, C., Srivastava, A., Erlebacher, G.: Principal component analysis of range images for facial recognition. In: Proceedings of CISST, Las Vegas, June (2002)

  5. Tsalakanidou F., Tzovaras D., Strintzis M. (2003). Use of depth and color eigenfaces for face recognition. Pattern Recognit. Lett. 24:427–1435

    Article  Google Scholar 

  6. Achermann, B., Jiang, X., Bunke, H.: Face recognition using range images. In: Proceedings of the International Conference on Virtual Systems and Multimedia, pp. 129–136 (1997)

  7. Tanaka, H., Ikeda, M., Chiaki, H.: Curvature-based face surface recognition using spherical correlation principal directions for curved object recognition. In: Proceedings of the Third International Conference on Automated Face and Gesture Recognition, pp. 372–377 (1998)

  8. Gordon, G.: Face recognition based on depth maps and surface curvature. In: Geometric Methods in Computer Vision: SPIE, vol. 1570, pp. 1–12 (1991)

  9. Chang, K., Bowyer, K., Flynn, P.: Face recognition using 2D and 3D facial data. In: 2003 Multimodal User Authentication Workshop, pp. 25–32 (2003)

  10. Moreno, A., Sanchez, A., Velez, J., Diaz, F.: Face recognition using 3D surface-extracted descriptors. In: Proceedings of Irish Machine Vision and Image Processing Conference (2003)

  11. Lee, J., Milios, E.: Matching range images for human faces. In: Proceedings of the International Conference on Computer Vision, pp. 722–726 (1990)

  12. Chua, C., Han, F., Ho, Y.: 3D human face recognition using point signature. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 233–239 (2000)

  13. Wang Y., Chua C., Ho Y. (2002). Facial feature detection and face recognition from 2D and 3D images. Pattern Recognit. Lett. 23:1191–1202

    Article  MATH  Google Scholar 

  14. Turk M., Pentland A. (1994). Eigenfaces for recognition. J. Cognit. Neurosci. 3:71–86

    Article  Google Scholar 

  15. Heseltine T., Pears N., Austin J. (2004). Three-dimensional face recognition: a fishersurface approach. ICIAR 2:684–691

    Google Scholar 

  16. Fisher N.I., Lee A.J. (1986). Correlation coefficients for random variables on a unit sphere or hypersphere. Biometrica 73:159–164

    Article  MATH  MathSciNet  Google Scholar 

  17. Duda R., Hart P. (1973). Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  18. Chua C., Jarvis R. (1997). Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1):63–85

    Article  Google Scholar 

  19. Lu, X., Colbry, D., Jain, A.: Three dimensional model-based face recognition. In: Proceedings of the International Conference on Pattern Recognition (2004)

  20. Lu, X., Colbry, D., Jain, A.: matching 2.5d scans for face recognition. In: Proceedings of the International Conference on Biometric Authentication (ICBA) (2004)

  21. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of the International Conference on Robotics and Automation (1991)

  22. Jonathan Phillips P., Moon H., Rizvi S., Rauss P. (2000). The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10):1090–1104

    Article  Google Scholar 

  23. Rajwade, A., Levine, M.: Facial pose from 3D data. J. Image Vis. Comput. (accepted, 2006)

  24. Li, Y., Gong, S., Liddell, H.: Support vector regression and classification based multi-view face detection and recognition. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 300–305 (2000)

  25. Schmola, A., Scholkopf, A.: A Tutorial on Support Vector Regression. NeuroCOLT2 Technical Report NC2-TR-1998-030 (1998)

  26. Tax D., Duin R. (1999). Support Vector Domain Description. Pattern Recognit. Lett. 20:1191–1199

    Article  Google Scholar 

  27. Vapnik V. (1998). Statistical Learning Theory. Wiley, New York

    MATH  Google Scholar 

  28. Bennet K., Campbell C. (2000). Support vector machines: hype or hallelujah?. SIGKDD Explor. 2(2):1–13

    Article  Google Scholar 

  29. Li S., Fu Q., Gu L., Scholkopf B., Cheng Y., Zhang H. (2001). Kernel based machine learning for multi-view face detection and pose estimation. Proc. Int. Conf. Comput. Vis. 2:674–679

    Google Scholar 

  30. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of SIGGRAPH, pp. 353–360 (1999)

  31. Amenta, N., Choi, S., Kolluri, R.: The power crust. In: The 6th ACM Symposium on Solid Modeling and Applications, pp. 249–260 (2001)

  32. Chang, C., Lin, C.: LIBSVM: a Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (2001)

  33. Motwani M., Ji Q. (2001). 3D face pose discrimination using wavelets. Proc. Int. Conf. Image Process. 1:1050–1053

    Google Scholar 

  34. Sherrah J., Gong S., Ong E. (2001). Face distributions in similarity space under varying head pose. Image Vis. Comput. 19:807–819

    Article  Google Scholar 

  35. Sadjadi F.A., Hall E.L. (1980). Three-dimensional moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 2(2):127–136

    Article  MATH  Google Scholar 

  36. Feldmar J., Ayache N. (1996). Rigid, affine and locally affine registration of free-form surfaces. Int. J. Comput. Vis. 18(2):99–119

    Article  Google Scholar 

  37. Masuda, T., Sakaue, K., Yokoya, N.: Registration and integration of multiple range images for 3D model construction. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 879–883 (1996)

  38. Zhang, Z.: On local matching of free-form curves. In: Proceedings of the British Machine Vision Conference, pp. 347–356 (1992)

  39. Preparata F., Shamos M. (1985). Computational Geometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  40. Bentley, J.: K-d trees for semidynamic point sets. In: Proceedings of the 6th Annual Symposium on Computational Geometry, pp. 187–197 (1990)

  41. Jost, T., Hugli, H.: A multi-resolution scheme ICP algorithm for fast shape registration. In: Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy, pp. 540–543 (2002).

  42. .http://ph.konicaminolta.com.hk/eng/industrial/3d.htm, “Minolta Vivid Range Scanner”.

  43. Fitzgibbon, A.: Robust registration of 2D and 3D point sets. In: Proceedings of the British Machine Vision Conference, pp. 411–420 (2001)

  44. Press, W., Teukolsky, S., Fetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

  45. Chui H., Rangarajan A. (2000). A new algorithm for non-rigid point matching. IEEE Conf. Comput. Vis. Pattern Recognit. 2:44–51

    Google Scholar 

  46. Lee D., Seung H. (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  Google Scholar 

  47. Phillips, P., Grother, P., Michaels, R., Blackburn, D., Tabassi, E., Bone, J.: FRVT 2002: An Overview and Summary. Evaluation report, March 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, M.D., Rajwade, A. Three-dimensional view-invariant face recognition using a hierarchical pose-normalization strategy. Machine Vision and Applications 17, 309–325 (2006). https://doi.org/10.1007/s00138-006-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-006-0036-0

Keywords

Navigation