Skip to main content
Log in

Camera cooperation for achieving visual attention

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper we address the problem of establishing a computational model for visual attention using cooperation between two cameras. More specifically we wish to maintain a visual event within the field of view of a rotating and zooming camera through the understanding and modeling of the geometric and kinematic coupling between a static camera and an active camera. The static camera has a wide field of view thus allowing panoramic surveillance at low resolution. High-resolution details may be captured by a second camera, provided that it looks in the right direction. We derive an algebraic formulation for the coupling between the two cameras and we specify the practical conditions yielding a unique solution. We describe a method for separating a foreground event (such as a moving object) from its background while the camera rotates. A set of outdoor experiments shows the two-camera system in operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, D., Basu, A.: Motion tracking with an active camera. IEEE Trans. Pattern Anal. Machine Inttel. 16(5), 449–459 (1994)

    Article  Google Scholar 

  2. Fayman, J.A., Sudarsky, O., Rivlin, E., Rudzsky, M.: Zoom tracking and its applications. Machine Vision Appl. 13(1), 25–37 (2001)

    Article  Google Scholar 

  3. Daniilidis, K., Krauss, C., Hansen, M., Sommer, G.: Real time tracking of moving objects with an active camera. Real Time Imag. 4(1), 3–20 (1998)

    Article  Google Scholar 

  4. Murray, D.W., Bradshaw, K.J., McLauchlan, P.F., Reid, I.D., Sharkey, P.M.: Driving saccade to pursuit using image motion. Int. J. Comput. Vision 16(3), 205–228 (1995)

    Article  Google Scholar 

  5. Coombs, D., Brown, C.: Real-time binocular smooth pursuit. Int. J. Comput. Vision 11(2), 147–164 (1993)

    Article  Google Scholar 

  6. Batista, J., Peixoto, P., Araujo, H.: Real-time active visual surveillance by integrating peripheral motion detection with foveated tracking. In: IEEE Workshop on Visual Surveillance. Mumbai, India (1998)

  7. Martin, F., Horaud, R.: Multiple camera tracking of rigid objects. Int. J. Robot. Res. 21(2), 97–113 (2002)

    Article  Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK (2000)

  9. Peixoto, P., Batista, J., Araujo, H.: Integration of information from several vision systems for a common task of surveillance. In: 6th International Workshop on Intelligent Robotics Systems. Edinburgh, UK (1998)

  10. Crétual, A., Chaumette, F.: Application of motion-based visual servoing to target tracking. Int. J. Robot. Res. 20(11), 878–890 (2001)

    Article  Google Scholar 

  11. McCarthy, J.M.: Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)

  12. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Ann Arbor (1994)

    MATH  Google Scholar 

  13. Mooring, B.W., Roth, Z.S., Driels, M.R.: Fundamentals of Manipulator Calibration. Wiley, New York (1991)

    Google Scholar 

  14. Cox, D., Little, J., O'Shea, D.: Using Algebraic Geometry. Springer, Berlin Heidelberg, New York (1998)

    MATH  Google Scholar 

  15. Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In: Proceedings of the Third European Conference on Computer Vision, pp. 471–478. Stockholm, Sweden (May 1994)

  16. Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice, Corfu, Greece, July 1999. LNCS 1883, pp. 267–277. Springer-Verlag, Berlin Heidelberg New York (1999)

  17. Shum, H.-Y., Szeliski, R.: Systems and experiment paper: construction of panoramic mosaics with global and local alignment. Int. J. Comput. Vision 36(2), 101–130 (2000)

    Article  Google Scholar 

  18. Bartoli, A., Dalal, N., Horaud, R.: Motion panoramas. Comput. Animation Virtual Worlds 15(6), 501–517 (2004)

    Article  Google Scholar 

  19. Dufaux, F., Moscheni, F.: Background mosaicking for low bit rate video coding. In: Proceedings IEEE International Conference on Image Processing, vol. 1, pp. 673–676. Lausanne, Switzerland (1996)

  20. Personnaz, M., Horaud, R.: Camera calibration: estimation, validation and software. Technical Report RT-0258. INRIA Rhone Alpes, Grenoble (2002)

  21. Personnaz, M., Sturm, P.: Calibration of a stereo-vision system by the non-linear optimization of the motion of a calibration object. Technical Report RT-0269, INRIA (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Horaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horaud, R., Knossow, D. & Michaelis, M. Camera cooperation for achieving visual attention. Machine Vision and Applications 16, 1–2 (2006). https://doi.org/10.1007/s00138-005-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-005-0182-9

Keywords

Navigation