Skip to main content
Log in

Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

A new machine vision approach for quantitatively estimating and monitoring the appearance and aesthetics of manufactured products is presented. The approach is composed of three steps: (1) wavelet-based textural feature extraction from product images, (2) estimation of measures of the product appearance through subspace projection of the textural features, and (3) monitoring of the appearance in the latent variable subspace of the textural features. The methodology is specifically designed to treat the stochastic nature of the visual appearance of many manufactured products. This nondeterministic aspect of product appearance has been an obstacle for the success of machine vision in many industries. The emphasis of this approach is on the consistent and quantitative estimation of continuous variations in visual appearance rather than on classification into discrete classes. This allows for the on-line monitoring and the eventual feedback control of product appearance. This approach is successfully applied to the estimation and monitoring of the aesthetic quality of manufactured stone countertops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities, 2nd edn. Academic Press, San Diego, CA (1997)

    Google Scholar 

  2. Marshall, A.D., Martin, R.R.: Computer Vision, Models and Inspection. World Scientific Publishing, Singapore (1992)

    Google Scholar 

  3. Hyper Dictionary: http://www.hyperdictionary.com/search.aspx?define=computer±vision

  4. Liu, J., MacGregor, J.F., Duchesne, C., Bartolacci, G.: Monitoring of flotation processes using multiresolutional multivariate image analysis. Miner. Eng. 18(1), 65–76 (2005)

    Article  Google Scholar 

  5. Liu, J., MacGregor, J.F.: Modeling and optimization of product appearance: application to injection-molded plastic panels. Ind. Eng. Chem. Res. 44, 4687–4696 (2005)

    Article  Google Scholar 

  6. Bharati, M., Liu, J., MacGregor, J.F.: Image texture analysis: methods and comparisons. Chemometrics Intell. Lab. Syst. 72(1), 57–71 (2004)

    Article  Google Scholar 

  7. Honglu, Y., MacGregor, J.F., Haarsma, G., Bourg, W.: Digital imaging for on-line monitoring and control of industrial snack food processes. Ind. Eng. Chem. Res. 42(13), 3036–3044 (2003)

    Article  Google Scholar 

  8. Honglu, Y., MacGregor, J.F.: Monitoring flames in an industrial boiler using multivariate image analysis. AIChE J. 50(7), 1474–1483 (2004)

    Article  Google Scholar 

  9. Liu, J., MacGregor, J.F.: On the extraction of spectral and spatial information for image analysis. Chemometrics Intell. Lab. Syst. (2004)

  10. Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  11. Rioul, O., Duhamel, P.: Fast algorithms for discrete and continuous wavelet transforms. IEEE Trans. Inform. Theory 38(2), 569–586 (1992)

    Article  MathSciNet  Google Scholar 

  12. Daubechies, I.: Ten lectures on wavelets. In: Proceedings of the CBMS-NSF Reg. Conf. Series in Applied Math. no. 61. SIAM, Philadelphia, PA (1992)

  13. Vetterli, M., Kovaević, J.: Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs, NJ (1995)

    MATH  Google Scholar 

  14. Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    Article  Google Scholar 

  15. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., et al., (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 235–276. World Scientific Publishing, New Jersey (1993)

    Google Scholar 

  16. Chang, T., Kuo, C.C.J.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2(4), 429–441 (1993)

    Article  Google Scholar 

  17. Etdmad, K., Chellappa, R.: Separability-based multiscale basis selection and feature extraction for signal and image classification. IEEE Trans. Image Process. 7(10), 1453–1465 (1998)

    Article  Google Scholar 

  18. Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1186–1191 (1993)

    Article  Google Scholar 

  19. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)

    Article  Google Scholar 

  20. Karhunen, K.: Uber lineare methoden in der Wahrsccheilichkeitsrechnung. Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys. 37, 3–79 (1947)

    Google Scholar 

  21. Loéve, M.: Probability Theory. Van Nostrand, New York (1963)

    MATH  Google Scholar 

  22. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(Part II), 179–188 (1936)

    Google Scholar 

  23. Bell, A.J., Sejnoski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  PubMed  Google Scholar 

  24. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 23(9), 881–890 (1974)

    Article  MATH  Google Scholar 

  25. Kresta, J.V., MacGregor, J.F., Marlin, T.E.: Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 69, 35–47 (1991)

    Article  Google Scholar 

  26. Kourti, T., MacGregor, J.F.: Multivariate statistical process control methods for monitoring and diagnosing process and product performance. J. Qual. Technol. 28, 409–428 (1996)

    Google Scholar 

  27. Jackson, J.E.: A User's Guide to Principal Components. Wiley-Interscience, New York (1991)

    Book  MATH  Google Scholar 

  28. Lee, J.-.M, Yoo, C., Lee, I.B.: Statistical process monitoring using independent component analysis. J. Process Control 14(5), 467–485 (2004)

    Article  Google Scholar 

  29. Mojsilović, A., Popović, M.V., Rackkov, D.M.: On the selection of an optimal wavelet basis for texture characterization. IEEE Trans. Image Process. 9(12), 2043–2050 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Besse, P., de Falguerolles, A.: Application of resampling methods to the choice of dimension in principal component analysis. In: Härdle, W., Simar, L. (eds.) Computer Intensive Methods in Statistics, pp. 167–174. Physica-Verlag, Heidelberg, Germany (1993)

    Google Scholar 

  31. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading, MA (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J.J., MacGregor, J.F. Estimation and monitoring of product aesthetics: application to manufacturing of “engineered stone” countertops. Machine Vision and Applications 16, 374–383 (2006). https://doi.org/10.1007/s00138-005-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-005-0009-8

Keywords

Navigation