Skip to main content
Log in

Systemic and regional pCO2 gradients as markers of intestinal ischaemia

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective: We evaluated the response of mixed venous-arterial carbon dioxide (pCO2) to severe intestinal ischaemia produced by gradual occlusion of the superior mesenteric artery (SMA).

Design: Prospective, controlled, experimental study.

Setting: Animal research laboratory.

Subjects: Twelve domestic pigs.

Interventions: SMA blood flow was reduced by 40 %, 70 % and 100 % from the baseline at 60-min intervals.

Measurements and main results: Haemodynamics were monitored continuously and blood gas values were determined at 30-min intervals. During the SMA occlusion we observed the development of intra-mucosal acidosis, increased splanchnic oxygen extraction and an increased portal venous-arterial lactate gradient indicative of splanchnic hypoperfusion and intestinal ischaemia. Intramucosal-arterial (p<0.001), intramucosal-portal venous (p<0.01) and portal venous-arterial (p<0.01) pCO2 gradients increased during the SMA occlusion, whereas the mixed venous-arterial pCO2 gradient remained unchanged. The mixed venous-arterial pCO2 gradient did not correlate with the intramucosal-arterial pCO2 gradient (r=0.13), portal venous-arterial lactate gradient (r=0.10) or splanchnic oxygen extraction (r=0.14). The portal venous-arterial pCO2 gradient correlated with the portal venous-arterial lactate gradient (r=0.75, p<0.001) and splanchnic oxygen extraction (r=0.79, p<0.001), but not with the intramucosal-arterial pCO2 gradient (r=0.35).

Conclusion: Despite clear evidence of severe splanchnic hypoperfusion, as shown by regional hypercarbia and lactate production, the mixed venous-arterial pCO2 gradient did not reflect splanchnic hypoperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multipleorgan failure syndrome. Arch Surg 121: 196–208

    PubMed  CAS  Google Scholar 

  2. Deitch EA, Berg R, Specian R (1987) Endotoxin promotes the translocation of bacteria from the gut. Arch Surg 122:185–190

    PubMed  CAS  Google Scholar 

  3. Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, Dubin A, Schiavi E, San Roman E, Dorfman B, Shottlender J, Giniger R (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  4. Maynard N, Bihari D, Beale R, Smithies M, Baldock G, Mason R, McColl I (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210

    Article  PubMed  CAS  Google Scholar 

  5. Antonsson JB, Engstrom L, Rasmussen I, Wollert S, Haglund UH (1995) Changes in gut intramucosal pH and gut oxygen extraction ratio in a porcine model of peritonitis and hemorrhage. Crit Care Med 23:1872–1881

    Article  PubMed  CAS  Google Scholar 

  6. Benjamin E, Paluch TA, Berger SR, Premus G, Wu C, Iberti TJ (1987) Venous hypercarbia in canine hemorrhagic shock. Crit Care Med 15: 516–518

    Article  PubMed  CAS  Google Scholar 

  7. Moore EE, Good JT (1982) Mixed venous and arterial pH: a comparison during hemorrhagic shock and hypothermia. Ann Emerg Med 11: 300–302

    Article  PubMed  CAS  Google Scholar 

  8. Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, Vincent JL (1995) Detection of tissue hypoxia by arteriovenous gradient for pCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 80: 269–275

    Article  PubMed  Google Scholar 

  9. Mathias DW, Clifford PS, Klopfenstein HS (1988) Mixed venous blood gases are superior to arterial blood gases in assessing acid-base status and oxygenation during acute cardiac tamponade in dogs. J Clin Invest 82: 833–838

    Article  PubMed  CAS  Google Scholar 

  10. Groeneveld AB, Vermeij CG, Thijs LG (1991) Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 73: 576–582

    PubMed  CAS  Google Scholar 

  11. Zhang H, Vincent JL (1993) Arteriovenous differences in pCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148: 867–871

    PubMed  CAS  Google Scholar 

  12. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ (1992) Veno-arterial carbon dioxide gradient in human septic shock. Chest 101: 509–515

    Article  PubMed  CAS  Google Scholar 

  13. Mecher CE, Rackow EC, Astiz ME, Weil MH (1990) Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 18: 585–589

    Article  PubMed  CAS  Google Scholar 

  14. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI (1986) Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 315:153–156

    PubMed  CAS  Google Scholar 

  15. Hartikainen J (1987) Function of aortic baroreceptors in different haemodynamic conditions. University of Kuopio, Kuopio, pp 46–64

    Google Scholar 

  16. Fiddian Green RG, Amelin PM, Herrmann JB, Arous E, Cutler BS, Schiedler M, Wheeler HB, Baker S (1986) Prediction of the development of sigmoid ischemia on the day of aortic operations. Indirect measurements of intramural pH in the colon. Arch Surg 121: 654–660

    Google Scholar 

  17. Grundler W, Weil MH, Rackow EC (1986) Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 74:1071–1074

    PubMed  CAS  Google Scholar 

  18. Martin GB, Carden DL, Nowak RM, Tomlanovich MC (1985) Comparison of central venous and arterial pH and pCO2 during open-chest CPR in the canine model. Ann Emerg Med 14: 529–533

    Article  PubMed  CAS  Google Scholar 

  19. Bowles SA, Schlichtig R, Kramer DJ, Klions HA (1992) Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs. J Crit Care 7: 95–105

    Article  Google Scholar 

  20. Adrogue HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE (1989) Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med 320: 1312–1316

    PubMed  CAS  Google Scholar 

  21. Halmagyi DF, Kennedy M, Varga D (1970) Hidden hypercapnia in hemorrhagic hypotension. Anesthesiology 33: 594–601

    Article  PubMed  CAS  Google Scholar 

  22. Antonsson JB, Boyle CC 3rd, Kruithoff KL, Wang HL, Sacristan E, Rothschild HR, Fink MP (1990) Validation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259: G519-G523

    PubMed  CAS  Google Scholar 

  23. Montgomery A, Almqvist P, Arvidsson D, Lindgren S, Haglund U (1990) Early detection of gastrointestinal mucosal ischemia in porcine E. coli sepsis. Acta Chir Scand 156: 613–620

    PubMed  CAS  Google Scholar 

  24. Schlichtig R, Mehta N, Gayowski TJ (1996) Tissue-arterial pCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J Crit Care 11: 51–56

    Article  PubMed  CAS  Google Scholar 

  25. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451

    PubMed  CAS  Google Scholar 

  26. Lundberg J, Lundberg D, Norgren L, Ribbe E, Thorne J, Werner O (1990) Intestinal hemodynamics during laparotomy: effects of thoracic epidural anesthesia and dopamine in humans. Anesth Analg 71: 9–15

    Article  PubMed  CAS  Google Scholar 

  27. Ayuse T, Brienza N, Revelly JP, Boitnott JK, Robotham JL (1995) Role of nitric oxide in porcine liver circulation under normal and endotoxemic conditions. J Appl Physiol 78:1319–1329

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heino, A., Merasto, M.E., Alhava, E. et al. Systemic and regional pCO2 gradients as markers of intestinal ischaemia. Intensive Care Med 24, 599–604 (1998). https://doi.org/10.1007/s001340050621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001340050621

Key words

Navigation