Skip to main content
Log in

Multiple organ failure (MOF) after severe trauma — A sheep model

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective: To perform a reproducible long-term (10 days) large animal model of multiple systems organ failure without necessity of a continuous stimulus.

Design: Adult female merino sheep submitted to a 5-day stimulation period followed by a 5-day observation period. Day 1: Hemorrhagic shock was combined with a traumatic surgical insult (reamed intra-medullary femoral nailing), followed by serial administrations every 12 h for 5 days of a combination of endotoxin and zymosan activated plasma. Organ function was followed for 5 further days.

Results: Cardiac index increased significantly during the study (day 1: 491 ± 8 mmHg; day 10: 427 ± 20, p<0.05). Liver function was impaired and bilirubin levels increased significantly (day 1: 2.9 ± 0.3 µmol/1; day 10: 7.2 ± 0.9; p<0.05). Creatinine clearance decreased initially (day 1: 54 ± 7 ml/min), increased to a peak on day 2 (104 ± 27), and then deteriorated again (day 10: 53 ± 18).

Conclusion: This new large animal model of trauma-induced MOF is reproducible and may be suitable for the study of new therapeutic approaches to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baue AE (1975) Multiple, progressive, or sequential system failure: a syndrome for the 1970s. Arch Surg 110:779–788

    PubMed  CAS  Google Scholar 

  2. Knaus WA, Wagner DP (1989) Multiple systems organ failure: epidemiology and prognosis. Crit Care Clin 5: 221–232

    PubMed  CAS  Google Scholar 

  3. Chaudry IH, Wang P, Singh G, Hauptman JG, Ayla A (1993) Rat and mouse models of hypovolemic-traumatic shock. In: G Schlag, H Redl H (eds) Pathophysiology of shock, sepsis and organ failure. Springer, Berlin, New York, London, pp 371–392

    Google Scholar 

  4. Goris RJA, Boekholtz WKF, Van Bebber IPT, Nuytinck JKS, Schillings PHM (1986) Multiple organ failure and sepsis without bacteria. Arch Surg 121: 897–903

    PubMed  CAS  Google Scholar 

  5. Pape H-C, Dwenger A, Regel G, Schweitzer G, Remmers D, Pape D, Sturm JA (1994) Pulmonary damage after recurrent administration of endotoxin and zymosan activated plasma — a sheep model. Theor Surg 9: 82–89

    Google Scholar 

  6. Pape H-C, Dwenger A, Regel G, Schweitzer G, Remmers D, Pape D, Sturm JA (1993) Hemorrhagic shock, endotoxin and complement activation induce late organ failure in sheep. Theor Surg 8: 21–28

    Google Scholar 

  7. Schlag G, Redl H, Davies J, Van Vuuren CCJ, Smuts P (1993) Live Escherichia coli sepsis models in Baboons. In: Schlag G, Redl H, (eds) Pathophysiology of shock, sepsis and organ failure. Springer Berlin, Heidelberg, New York, pp 1093–1107

    Google Scholar 

  8. Steinberg S, Flynn W, Kelley K, Sharma P, Hassett J, Price R, Flint L (1989) Development of a bacteria-independant model of the multiple organ failure syndrome. Arch Surg 124:1390–1394

    PubMed  CAS  Google Scholar 

  9. Bickhardt K (1987) Organ distribution pattern and plasma half-life times of diagnostically important enzymes in the sheep. Berl Munch Tierärztl Wochenschr 100:155–161

    Google Scholar 

  10. Kox W, Schindler HG, Brug E (1979) Biochemische und histologische Veränderungen nach Trauma und Schock — tierexperimentelle Untersuchungen zur Pathogenese des akuten Lungenversagens und der sogenannten Fettembolie. Hefte Unfallheilkunde 138: 272–275

    CAS  Google Scholar 

  11. Rana MW, Sing G, Wang P (1992) Protective effects of preheparinzation on microvasculature during and following hemorrhagic shock. J Trauma 32: 420–425

    Article  PubMed  CAS  Google Scholar 

  12. Pretorius JP, Schlag G, Redl H (1987) The ‘lung in shock’ as a result of hypovolemic-traumatic shock. J Trauma 27: 1344–1352

    Article  PubMed  CAS  Google Scholar 

  13. Pape H-C, Regel G, Dwenger A, Sturm JA (1990) Does additional lung injury and hemorrhagic shock aggravate lung damage from intrameduallary nailing in sheep? Circ Shock 31: 54

    Google Scholar 

  14. Demling RH, Lalonde CC, Jin LJ, Albes J, Fiori N (1986) The pulmonary and systemic response to recurrent endotoxemia in the adult sheep. Surgery 100:876–883

    PubMed  CAS  Google Scholar 

  15. Lang CH, Spitzer JA (1987) Glucose kinetics and development of endotoxin tolerance during long-term endotoxin infusion. Metabolism 36: 469–474

    Article  PubMed  CAS  Google Scholar 

  16. Egan TM, Saunders NR, Luk SC, Cooper JD (1988) Complement mediated pulmonary edema in sheep. J Surg Res 45: 204–214

    Article  PubMed  CAS  Google Scholar 

  17. Doerschuk CM, Allard MF, Hogg JC (1989) Neutrophil kinetics in rabbits during infusion of zymosan activated plasma. J Appl Physiol 67: 88–95

    PubMed  CAS  Google Scholar 

  18. Nuytinck JK, Goris RJ, Weerts JGE, Schillings PHM, Schurmanns JH (1986) Acute generalized microvascular injury by activated complement and hypoxia: the basis of the adult respiratory distress syndrome and multiple organ failure? Br J Exp Pathol 67: 548–553

    Google Scholar 

  19. Deitch EA, Berg RD (1987) Endotoxin but not malnutrition promotes bacterial translocation of the gut flora in burned mice. J Trauma 27, 2:161–166

    Article  PubMed  CAS  Google Scholar 

  20. Regel G, Nerlich ML, Dwenger A, Sturm JA (1989) Induction of pulmonary injury by PMNL after bone marrow fat injection and endotoxemia: a sheep model. Theor Surg 4: 22–30

    Google Scholar 

  21. Pape H-C, Dwenger A, Regel G, Schweitzer G, Jonas M, Remmers D, Krumm K, Sturm JA, Tscherne H (1992) Pulmonary damage after intra-medullary femoral nailing in traumatized sheep — is there any effect of different nailing methods? J Trauma 33: 574–578

    Article  PubMed  CAS  Google Scholar 

  22. Pape H-C, Regel G, Tscherne H (1996) Local and systemic effects of fat embolization after intramedullary reaming and its influence by cofactors. Techniques in Orthop 11,1: 2-13

    Article  Google Scholar 

  23. Pape H-C, Auf m’Kolck M, Paffrath T, Regel G, Sturm JA, Tscherne H (1993) Primary intramedullary femur fixation in multiple trauma patients with associated lung contusion — a cause of post-traumatic ARDS? J Trauma 34, 4: 540–548

    Article  PubMed  CAS  Google Scholar 

  24. Heideman M, Kaiser B, Gelin LE (1978) Complement activation by homogenized muscle tissue. J Surg Res 25: 518–523

    Article  PubMed  CAS  Google Scholar 

  25. Zilow G, Sturm JA, Rother U, Kirsch-fink M (1990) Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome. Clin Exp Immun 79:151–155

    Article  PubMed  CAS  Google Scholar 

  26. Deitch EA, Ma WJ, Ma L (1989) Endotoxin-induced bacterial translocation: a study of mechanisms. Surgery 106: 300–302

    Google Scholar 

  27. Pape H-C, Regel G, Dwenger A, Schweitzer G, Krettek K, Sturm JA, Tscherne H (1993) Influences of different methods of intramedullary femoral nailing on lung function in patients with multiple trauma. J Trauma 35, 5: 709-715

    Article  PubMed  CAS  Google Scholar 

  28. Pape H-C, Dwenger A, Grotz M, Kaever V, Negatsch R, Kleemann W, Sturm JA, Tscherne H (1994) Does the reamer type influence the degree of lung dysfunction after femoral nailing following severe trauma? An animal study. J Orthop Trauma 8, 4: 300-309

    Article  PubMed  CAS  Google Scholar 

  29. Wichterman KA, Baue AE, Chaudry IH (1980) Sepsis and septic shock — a review of laboratory models and a proposal. J Surg Res 29:189–201

    Article  PubMed  CAS  Google Scholar 

  30. Goris RJ, Boeckhorst PA, Nuytinck KS (1985) Multiple organ failure: generalized autodestructive inflammation. Arch Surg 20:1109–1120

    Google Scholar 

  31. Pape H-C, Remmers D, Kleemann W, Goris RJA, Tscherne H (1994) Post-traumatic multiple organ failure — a report on clinical and autopsy findings. Shock 1: 228–234

    Article  Google Scholar 

  32. Pape H-C, Dwenger A, Regel G, Goollub F, Wisner D, Sturm JA, Tscherne H (1994) Increased gut permeability after multiple trauma. Br J Surg 81: 850–852

    Article  PubMed  CAS  Google Scholar 

  33. Chaudry IH, Blasko KA, Wagner PA (1989) A clinically relevant model of hemorrhagic shock and resuscitation in the rat. Circ Shock 27: 318–319

    Google Scholar 

  34. Dwenger A, Remmers D, Grotz M, Pape H-C, Gruner A, Jochum M, Regel G (1996) Aprotinin prevents the development of trauma induced MOF in a chronic sheep model. Eur J Clin Chem Clin Biochem 34, 3: 207-214

    PubMed  CAS  Google Scholar 

  35. Remmers D, Dwenger A, Grotz M, Pape H-C, Gruner A, Regel G (1996) Attenuation of multiple organ dysfunction in a chronic sheep model by the 21-aminosteroid U74389 G. J Surg Res 62,2: 278-273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by “Deutsche Forschungsge-meinschaft”, Proj. No. Re 1015/1-1 and /1-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pape, H.C., Grotz, M., Remmers, D. et al. Multiple organ failure (MOF) after severe trauma — A sheep model. Intensive Care Med 24, 590–598 (1998). https://doi.org/10.1007/s001340050620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001340050620

Key words

Navigation