Skip to main content

Advertisement

Log in

Epidemiology, clinical presentation, and outcomes of 620 patients with eosinophilia in the intensive care unit

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

A Correction to this article was published on 12 April 2023

This article has been updated

Abstract

Purpose

Although eosinophil-induced manifestations can be life-threatening, studies focusing on the epidemiology and clinical manifestations of eosinophilia in the intensive care unit (ICU) are lacking.

Methods

A retrospective, national, multicenter (14 centers) cohort study over 6 years of adult patients who presented with eosinophilia ≥ 1 × 109/L on two blood samples performed from the day before admission to the last day of an ICU stay.

Results

620 patients (0.9% of all ICU hospitalizations) were included: 40% with early eosinophilia (within the first 24 h of ICU admission, ICU-Eo1 group) and 56% with delayed (> 24 h after ICU admission, ICU-Eo2 group) eosinophilia. In ICU-Eo1, eosinophilia was mostly due to respiratory (14.9%) and hematological (25.8%) conditions, frequently symptomatic (58.1%, mainly respiratory and cardiovascular manifestations) requiring systemic corticosteroids in 32.2% of cases. In ICU-Eo2, eosinophil-related organ involvement was rare (25%), and eosinophilia was mostly drug-induced (46.8%). Survival rates at day 60 (D60) after ICU admission were 21.4% and 17.2% (p = 0.219) in ICU-Eo1 and ICU-Eo2 patients, respectively. For ICU-Eo1 patients, in multivariate analysis, risk factors for death at D60 were current immunosuppressant therapy at ICU admission, eosinophilia of onco-hematological origin and the use of vasopressors at ICU admission, whereas older age and the use of vasopressors or mechanical ventilation at the onset of eosinophilia were associated with a poorer prognosis for ICU-Eo2 patients.

Conclusion

Eosinophilia ≥ 1 × 109/L is not uncommon in the ICU. According to the timing of eosinophilia, two subsets of patients requiring different etiological workups and management can be distinguished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author [AG].

Change history

References

  1. Marichal T, Mesnil C, Bureau F (2017) Homeostatic eosinophils: characteristics and functions. Front Med (Lausanne) 4:101. https://doi.org/10.3389/fmed.2017.00101

    Article  PubMed  Google Scholar 

  2. Ueki S, Melo RCN, Ghiran I et al (2013) Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121(11):2074–2083. https://doi.org/10.1182/blood-2012-05-432088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klion AD (2015) How I treat hypereosinophilic syndromes. Blood 126(9):1069–1077. https://doi.org/10.1182/blood-2014-11-551614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ogbogu PU, Bochner BS, Butterfield JH et al (2009) Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol 124(6):1319–25.e3. https://doi.org/10.1016/j.jaci.2009.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brambatti M, Matassini MV, Adler ED (2017) Eosinophilic myocarditis: characteristics, treatment, and outcomes. J Am Coll Cardiol 70(19):2363–2375. https://doi.org/10.1016/j.jacc.2017.09.023

    Article  PubMed  Google Scholar 

  6. Tennenbaum J, Groh M, Venditti L et al (2021) FIP1L1-PDGFRA-associated hypereosinophilic syndrome as a treatable cause of watershed infarction. Stroke. https://doi.org/10.1161/STROKEAHA.121.034191

    Article  PubMed  Google Scholar 

  7. Groh M, Pineton de Chambrun M, Georges JL et al (2021) Recurrent cardiac arrest due to eosinophilia-related coronary vasospasm successfully treated by benralizumab. J Allergy Clin Immunol Pract 9(9):3497-3499.e1. https://doi.org/10.1016/j.jaip.2021.04.067

    Article  CAS  PubMed  Google Scholar 

  8. Valent P, Klion A, Horny H et al (2012) Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 130(3):607-612.e9. https://doi.org/10.1016/j.jaci.2012.02.019

    Article  PubMed  PubMed Central  Google Scholar 

  9. Louie S, Morrissey BM, Kenyon NJ, Albertson TE, Avdalovic M (2011) The critically ill asthmatic—from ICU to discharge. Clin Rev Allergy Immunol 43(1–2):30–44. https://doi.org/10.1007/s12016-011-8274-y

    Article  CAS  Google Scholar 

  10. Geri G, Rabbat A, Mayaux J et al (2015) Strongyloides stercoralis hyperinfection syndrome: a case series and a review of the literature. Infection 43(6):691–698. https://doi.org/10.1007/s15010-015-0799-1

    Article  PubMed  Google Scholar 

  11. Taccone FS, Van den Abeele AM, Bulpa P et al (2015) Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying conditions, and outcomes. Crit Care 19(1):7. https://doi.org/10.1186/s13054-014-0722-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kimmoun A, Dubois E, Perez P et al (2013) Shock state: an unrecognized and underestimated presentation of drug reaction with eosinophilia and systemic symptoms. Shock 40(5):387–391. https://doi.org/10.1097/SHK.0000000000000041

    Article  CAS  PubMed  Google Scholar 

  13. Marrie RA, Bernstein CN, Peschken CA et al (2017) Increased incidence of critical illness in psoriasis. J Cutan Med Surg 21(5):395–400. https://doi.org/10.1177/1203475417712497

    Article  PubMed  Google Scholar 

  14. Ha C, Maser EA, Kornbluth A (2013) Clinical presentation and outcomes of inflammatory bowel disease patients admitted to the intensive care unit. J Clin Gastroenterol 47(6):485–490. https://doi.org/10.1097/MCG.0b013e318275d981

    Article  PubMed  Google Scholar 

  15. van der Weide HY, van Westerloo DJ, van den Bergh WM (2015) Critical care management of systemic mastocytosis: when every wasp is a killer bee. Crit Care 19(1):238. https://doi.org/10.1186/s13054-015-0956-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kimmoun A, Baux E, Das V et al (2016) Outcomes of patients admitted to intensive care units for acute manifestation of small-vessel vasculitis: a multicenter, retrospective study. Crit Care 20:27. https://doi.org/10.1186/s13054-016-1189-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Groh M, Clisson-Russek I, Rohmer J, et al. Hyperéosinophilies et syndromes hyperéosinophiliques (Protocole National de Diagnostic et de Soins). 2022. https://www.has-sante.fr/upload/docs/application/pdf/2022-06/pnds_she_document_complet.pdf

  18. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383. https://doi.org/10.1016/0021-9681(87)90171-8

    Article  CAS  PubMed  Google Scholar 

  19. Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22(7):707–710. https://doi.org/10.1007/BF01709751

    Article  CAS  PubMed  Google Scholar 

  20. Kardaun SH, Sekula P, Valeyrie-Allanore L et al (2013) Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br J Dermatol 169(5):1071–1080

    Article  CAS  PubMed  Google Scholar 

  21. Sidoroff A, Dunant A, Viboud C et al (2007) Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR). Br J Dermatol 157:989–996

    Article  CAS  PubMed  Google Scholar 

  22. Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  PubMed  Google Scholar 

  23. Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390. https://doi.org/10.1182/blood-2016-01-643569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jennette JC, Falk RJ, Bacon PA et al (2013) 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 65(1):1–11. https://doi.org/10.1002/art.37715

    Article  CAS  PubMed  Google Scholar 

  25. Giacomi FD, Vassallo R, Yi ES, Ryu JH (2018) Acute eosinophilic pneumonia causes, diagnosis, and management. Poumon aigue Eo Am J Respir Crit Care Med 197(6):728–736. https://doi.org/10.1164/rccm.201710-1967CI

    Article  Google Scholar 

  26. Raghu G, Remy-Jardin M, Ryerson CJ et al (2020) Diagnosis of hypersensitivity pneumonitis in adults. An official ATS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 202(3):e36–e69. https://doi.org/10.1164/rccm.202005-2032ST

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosenberg M, Patterson R, Mintzer R et al (1977) Clinical and immunologic criteria for the diagnosis of allergic bronchopulmonary aspergillosis. Ann Intern Med 86(4):405–414. https://doi.org/10.7326/0003-4819-86-4-405

    Article  CAS  PubMed  Google Scholar 

  28. Donnelly JP, Chen SC, Kauffman CA et al (2020) Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 71(6):1367–1376. https://doi.org/10.1093/cid/ciz1008

    Article  PubMed  Google Scholar 

  29. Edwards IR, Aronson JK (2000) Adverse drug reactions: definitions, diagnosis, and management. Lancet 356(9237):1255–1259. https://doi.org/10.1016/S0140-6736(00)02799-9

    Article  CAS  PubMed  Google Scholar 

  30. Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81(3):515–526. https://doi.org/10.1093/biomet/81.3.515

    Article  Google Scholar 

  31. Roufosse F, Weller PF (2010) Practical approach to the patient with hypereosinophilia. J Allergy Clin Immunol 126(1):39–44. https://doi.org/10.1016/j.jaci.2010.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lefèvre G, Copin MC, Staumont-Sallé D et al (2014) The lymphoid variant of hypereosinophilic syndrome: study of 21 patients with CD3-CD4+ aberrant T-cell phenotype. Medicine (Baltimore) 93(17):255–266. https://doi.org/10.1097/MD.0000000000000088

    Article  CAS  PubMed  Google Scholar 

  33. Rohmer J, Couteau-Chardon A, Trichereau J et al (2020) Epidemiology, clinical picture and long-term outcomes of FIP1L1-PDGFRA-positive myeloid neoplasm with eosinophilia: data from 151 patients. Am J Hematol 95(11):1314–1323. https://doi.org/10.1002/ajh.25945

    Article  CAS  PubMed  Google Scholar 

  34. Price DB, Rigazio A, Campbell JD et al (2015) Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir Med 3(11):849–858. https://doi.org/10.1016/S2213-2600(15)00367-7.E

    Article  PubMed  Google Scholar 

  35. Pascoe S, Locantore N, Dransfield MT et al (2015) Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med 3(6):435–442. https://doi.org/10.1016/S2213-2600(15)00106-X

    Article  CAS  PubMed  Google Scholar 

  36. Hospers JJ, Schouten JP, St W et al (1999) Asthma attacks with eosinophilia predict mortality from chronic obstructive pulmonary disease in a general population sample. Am J Respir Crit Care Med 160(6):1869–1874. https://doi.org/10.1164/ajrccm.160.6.9811041

    Article  CAS  PubMed  Google Scholar 

  37. Grandière-Pérez L, Caumes E (2013) Corticosteroids for watershed infarction in acute schistosomiasis. Clin Infect Dis 57(6):918–919. https://doi.org/10.1093/cid/cit385

    Article  CAS  PubMed  Google Scholar 

  38. Psychogios K, Evmorfiadis I, Dragomanovits S et al (2017) ANCA-negative Churg-Strauss syndrome presenting as acute multiple cerebral infarcts: a case report. J Stroke Cerebrovasc Dis 26(3):e47–e49. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.009

    Article  PubMed  Google Scholar 

  39. André R, Cottin V, Saraux JL et al (2017) Central nervous system involvement in eosinophilic granulomatosis with polyangiitis (Churg-Strauss): report of 26 patients and review of the literature. Autoimmun Rev 16(9):963–969. https://doi.org/10.1016/j.autrev.2017.07.007

    Article  PubMed  Google Scholar 

  40. Lee D, Ahn TB (2014) Central nervous system involvement of hypereosinophilic syndrome: a report of 10 cases and a literature review. J Neurol Sci 347(1–2):281–287. https://doi.org/10.1016/j.jns.2014.10.023

    Article  PubMed  Google Scholar 

  41. Réau V, Vallée A, Terrier B et al (2021) Venous thrombosis and predictors of relapse in eosinophil-related diseases. Sci Rep 11(1):6388. https://doi.org/10.1038/s41598-021-85852-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Todd S, Hemmaway C, Nagy Z (2014) Catastrophic thrombosis in idiopathic hypereosinophilic syndrome. Br J Haematol 165(4):425. https://doi.org/10.1111/bjh.12729

    Article  PubMed  Google Scholar 

  43. Shehwaro N, Langlois AL, Gueutin V, Izzedine H (2013) Renal involvement in idiopathic hypereosinophilic syndrome. Clin Kidney J 6(3):272–276. https://doi.org/10.1093/ckj/sft046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lévesque LE, Hanley JA, Kezouh A, Suissa S (2010) Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes. BMJ 340:b5087. https://doi.org/10.1136/bmj.b5087

    Article  PubMed  Google Scholar 

  45. Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270(24):2957–2963. https://doi.org/10.1001/jama.270.24.2957

    Article  PubMed  Google Scholar 

  46. Hampshire PA, Welch CA, McCrossan LA et al (2009) Admission factors associated with hospital mortality in patients with haematological malignancy admitted to UK adult, general critical care units: a secondary analysis of the ICNARC Case Mix Programme Database. Crit Care 13(4):R137. https://doi.org/10.1186/cc8016

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ferreyro BL, Scales DC, Wunsch H et al (2021) Critical illness in patients with hematologic malignancy: a population-based cohort study. Intensive Care Med 47(10):1104–1114. https://doi.org/10.1007/s00134-021-06502-2

    Article  PubMed  Google Scholar 

  48. Wechsler ME, Akuthota P, Jayne D et al (2017) Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N Engl J Med 376(20):1921–1932. https://doi.org/10.1056/NEJMoa1702079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gleich GJ, Roufosse F, Chupp G et al (2021) Safety and efficacy of mepolizumab in hypereosinophilic syndrome: an open-label extension study. J Allergy Clin Immunol Pract 9(12):4431-4440.e1. https://doi.org/10.1016/j.jaip.2021.07.050

    Article  CAS  PubMed  Google Scholar 

  50. Mesli F, Dumont M, Soria A et al (2021) Benralizumab: a potential tailored treatment for life-threatening DRESS in the COVID-19 era. J Allergy Clin Immunol Pract 9(9):3529-3531.e1. https://doi.org/10.1016/j.jaip.2021.06.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Sylvie Meireles and Anne-Gaëlle Si Larbi for their help in data collection. We are grateful to Polly Gobin for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

AG and MG conceived the study. All authors contributed to data collection. AG and MG analyzed data. AG and MG provided graphical support. AG and MG drafted the manuscript. All authors contributed to revision of the final version of the manuscript.

Corresponding author

Correspondence to Antoine Gaillet.

Ethics declarations

Conflicts of interest

GL: consulting fees from GlaxoSmithKline and AstraZeneca; JEK: consulting fees from GlaxoSmithKline and AstraZeneca; MG: consulting fees from GlaxoSmithKline and AstraZeneca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the hyphen was missing from the surname of the author Armand Mekonsto-Dessap.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 991 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaillet, A., Bay, P., Péju, E. et al. Epidemiology, clinical presentation, and outcomes of 620 patients with eosinophilia in the intensive care unit. Intensive Care Med 49, 291–301 (2023). https://doi.org/10.1007/s00134-022-06967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-022-06967-9

Keywords

Navigation