Skip to main content

The future of antimicrobial dosing in the ICU: an opportunity for data science

This is a preview of subscription content, access via your institution.

Fig. 1

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. 1.

    Roberts JA, Paul SK, Akova M et al (2014) DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083. https://doi.org/10.1093/cid/ciu027

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Abdulla A, Ewoldt TMJ, Hunfeld NGM et al (2020) The effect of therapeutic drug monitoring of beta-lactam and fluoroquinolones on clinical outcome in critically ill patients: the DOLPHIN trial protocol of a multi-centre randomised controlled trial. BMC Infect Dis 20:57. https://doi.org/10.1186/s12879-020-4781-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Roggeveen LF, Fleuren LM, Guo T et al (2019) Right Dose Right Now: bedside data-driven personalized antibiotic dosing in severe sepsis and septic shock—rationale and design of a multicenter randomized controlled superiority trial. Trials. https://doi.org/10.1186/s13063-019-3911-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hagel S, Fiedler S, Hohn A et al (2019) Therapeutic drug monitoring-based dose optimisation of piperacillin/tazobactam to improve outcome in patients with sepsis (TARGET): a prospective, multi-centre, randomised controlled trial. Trials 20:330. https://doi.org/10.1186/s13063-019-3437-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rybak MJ, Le J, Lodise TP et al (2020) Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clin Infect Dis 71:1361–1364. https://doi.org/10.1093/cid/ciaa303

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Chai MG, Cotta MO, Abdul-Aziz MH, Roberts JA (2020) What are the current approaches to optimising antimicrobial dosing in the intensive care unit? Pharmaceutics 12(7):638

    CAS  Article  Google Scholar 

  7. 7.

    Gutierrez G (2020) Artificial intelligence in the Intensive Care Unit. Crit Care. https://doi.org/10.1186/s13054-020-2785-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Peiffer-Smadja N, Rawson TM, Ahmad R et al (2020) Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2019.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Imai S, Takekuma Y, Miyai T, Sugawara M (2020) A new algorithm optimized for initial dose settings of vancomycin using machine learning. Biol Pharm Bull. https://doi.org/10.1248/bpb.b19-00729

    Article  PubMed  Google Scholar 

  10. 10.

    Huang X, Yu Z, Wei X et al (2021) Prediction of vancomycin dose on high-dimensional data using machine learning techniques. Expert Rev Clin Pharmacol 14:761–771. https://doi.org/10.1080/17512433.2021.1911642

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Yamashita F, Fujita A, Sasa Y et al (2017) An evolutionary search algorithm for covariate models in population pharmacokinetic analysis. J Pharm Sci 106:2407–2411. https://doi.org/10.1016/j.xphs.2017.04.029

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Sepúlveda C, Montiel O, Cornejo Bravo JM, Sepúlveda R (2018) Fuzzy evaluation of pharmacokinetic models. Comput Intell Neurosci. https://doi.org/10.1155/2018/1983897

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Smith NM, Lenhard JR, Boissonneault KR et al (2020) Using machine learning to optimize antibiotic combinations: dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii. Clin Microbiol Infect 26:1207–1213. https://doi.org/10.1016/j.cmi.2020.02.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Koch G, Pfister M, Daunhawer I et al (2020) Pharmacometrics and machine learning partner to advance clinical data analysis. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.1774

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Finlayson SG, Subbaswamy A, Singh K et al (2021) The clinician and dataset shift in artificial intelligence. N Engl J Med 385:283–286. https://doi.org/10.1056/NEJMc2104626

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A special thanks goes out to Jarne Verhaeghe for the thought provoking discussions that aided in writing the more philosophical aspects of this manuscript. TDC receives funding from the FWO Junior Research project HEROI2C (Grant No. G085920N), which investigates hybrid machine learning for improved infection management in critically ill patients. JDW is senior clinical investigator, funded by the Research Foundation Flanders (FWO, Ref. 1881020N).

Funding

TDC receives funding from the FWO Junior Research project HEROI2C (Grant No. G085920N), which investigates hybrid machine learning for improved infection management in critically ill patients. JDW is senior clinical investigator funded by the Research Foundation Flanders (FWO, Ref. 1881020 N).

Author information

Affiliations

Authors

Contributions

All authors contributed to the conception, writing, and revision of the manuscript.

Corresponding author

Correspondence to Thomas De Corte.

Ethics declarations

Conflicts of interest

JDW has been consultant for Accelerate Diagnostics, Bayer Healthcare, MSD and Pfizer.

All other authors have no conflicting or competing interests to report.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Corte, T., Elbers, P. & De Waele, J. The future of antimicrobial dosing in the ICU: an opportunity for data science. Intensive Care Med 47, 1481–1483 (2021). https://doi.org/10.1007/s00134-021-06549-1

Download citation