Skip to main content

Advertisement

Log in

Early diagnosis of bloodstream infections in the intensive care unit using machine-learning algorithms

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

We aimed to develop a machine-learning (ML) algorithm that can predict intensive care unit (ICU)-acquired bloodstream infections (BSI) among patients suspected of infection in the ICU.

Methods

The study was based on patients’ electronic health records at Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts, USA, and at Rambam Health Care Campus (RHCC), Haifa, Israel. We included adults from whom blood cultures were collected for suspected BSI at least 48 h after admission. Clinical data, including time-series variables and their interactions, were analyzed by an ML algorithm at each site. Prediction ability for ICU-acquired BSI was assessed by the area under the receiver operating characteristics (AUROC) of ten-fold cross-validation and validation sets with 95% confidence intervals.

Results

The datasets comprised 2351 patients from BIDMC (151 with BSI) and 1021 from RHCC (162 with BSI). The median (inter-quartile range) age was 62 (51–75) and 56 (38–69) years, respectively; the median Acute Physiology and Chronic Health Evaluation II scores were 26 (21–32) and 24 (20–29), respectively. The means of the cross-validation AUROCs were 0.87 ± 0.02 for BIDMC and 0.93 ± 0.03 for RHCC. AUROCs of 0.89 ± 0.01 and 0.92 ± 0.02 were maintained in both centers with internal validation, while external validation deteriorated. Valuable predictors were mainly the trends of time-series variables such as laboratory results and vital signs.

Conclusion

An ML approach that uses temporal and site-specific data achieved high performance in recognizing BC samples with a high probability for ICU-acquired BSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vincent J, Sakr Y, Sprung C et al (2006) Sepsis Occurence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353. https://doi.org/10.1097/01.CCM.0000194725.48928.3A

    Article  PubMed  Google Scholar 

  2. Wisplinghoff H, Bischoff T, Tallent SM et al (2004) Nosocomial bloodstream infections in us hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317. https://doi.org/10.1086/421946

    Article  PubMed  Google Scholar 

  3. Savage RD, Fowler RA, Rishu AH et al (2016) The effect of inadequate initial empiric antimicrobial treatment on mortality in critically ill patients with bloodstream infections: a multi-centre retrospective cohort study. PLoS One 11:e0154944. https://doi.org/10.1371/journal.pone.0154944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ibrahim EH, Sherman G, Ward S et al (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146–155. https://doi.org/10.1378/chest.118.1.146

    Article  CAS  PubMed  Google Scholar 

  5. Bartlett JG (2004) Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 38:284–288. https://doi.org/10.1086/379825

    Article  Google Scholar 

  6. Shukrallah B, Hanna H, Hachem R et al (2007) Correlation between early clinical response after catheter removal and diagnosis of catheter-related bloodstream infection. Diagn Microbiol Infect Dis 58:453–457. https://doi.org/10.1016/j.diagmicrobio.2007.03.012

    Article  PubMed  Google Scholar 

  7. Adrie C, Garrouste-Orgeas M, Ibn Essaied W et al (2017) Attributable mortality of ICU-acquired bloodstream infections: impact of the source, causative micro-organism, resistance profile and antimicrobial therapy. J Infect 74:131–141. https://doi.org/10.1016/j.jinf.2016.11.001

    Article  PubMed  Google Scholar 

  8. Brooks D, Smith A, Young D et al (2016) Mortality in intensive care: the impact of bacteremia and the utility of systemic inflammatory response syndrome. Am J Infect Control 44:1291–1295. https://doi.org/10.1016/j.ajic.2016.04.214

    Article  PubMed  Google Scholar 

  9. Eliakim-Raz N, Bates DW, Leibovici L (2015) Predicting bacteraemia in validated models-a systematic review. Clin Microbiol Infect 21:295–301. https://doi.org/10.1016/j.cmi.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  10. Jensen JU, Hein L, Lundgren B et al (2011) Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med 39:2048–2058. https://doi.org/10.1097/CCM.0b013e31821e8791

    Article  CAS  PubMed  Google Scholar 

  11. de Jong E, van Oers JA, Beishuizen A et al (2016) Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 16:819–827. https://doi.org/10.1016/S1473-3099(16)00053-0

    Article  CAS  PubMed  Google Scholar 

  12. Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380:1347–1358. https://doi.org/10.1056/NEJMra1814259

    Article  PubMed  Google Scholar 

  13. Bailly S, Meyfroidt G, Timsit J-F (2018) What’s new in ICU in 2050: big data and machine learning. Intensive Care Med 44:1524–1527. https://doi.org/10.1007/s00134-017-5034-3

    Article  PubMed  Google Scholar 

  14. Komorowski M (2019) Artificial intelligence in intensive care: are we there yet? Intensive Care Med. https://doi.org/10.1007/s00134-019-05662-6

    Article  PubMed  Google Scholar 

  15. Johnson AEW, Pollard TJ, Shen L et al (2016) MIMIC-III, a freely accessible critical care database. Sci Data. https://doi.org/10.1038/sdata.2016.35

    Article  PubMed  PubMed Central  Google Scholar 

  16. Almeida LB (2018) The fractional Fourier transform and time-frequency representations. IEEE J Mag https://ieeexplore.ieee.org/abstract/document/330368

  17. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517. https://doi.org/10.1093/bioinformatics/btm344

    Article  CAS  PubMed  Google Scholar 

  18. Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6:21–45. https://doi.org/10.1109/MCAS.2006.1688199

    Article  Google Scholar 

  19. LeDell E, Petersen M, van der Laan M (2015) Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Electron J Stat 9:1583–1607. https://doi.org/10.1214/15-EJS1035

    Article  PubMed  PubMed Central  Google Scholar 

  20. Paul M, Andreassen S, Nielsen AD et al (2006) Prediction of bacteremia using TREAT, a computerized decision-support system. Clin Infect Dis 42:1274–1282. https://doi.org/10.1086/503034

    Article  PubMed  Google Scholar 

  21. Ratzinger F, Haslacher H, Perkmann T et al (2018) Machine learning for fast identification of bacteraemia in SIRS patients treated on standard care wards: a cohort study. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-30236-9

    Article  CAS  Google Scholar 

  22. Beam AL, Kohane IS (2018) Big data and machine learning in health care. JAMA 319:1317. https://doi.org/10.1001/jama.2017.18391

    Article  PubMed  Google Scholar 

  23. Rajkomar A, Oren E, Chen K et al (2018) Scalable and accurate deep learning for electronic health records. Digit Med 1:18. https://doi.org/10.1038/s41746-018-0029-1

    Article  Google Scholar 

  24. Vincent J-LL, Rello J, Marshall J et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329. https://doi.org/10.1001/jama.2009.1754

    Article  CAS  PubMed  Google Scholar 

  25. Kariv G, Paul M, Shani V et al (2013) Benchmarking inappropriate empirical antibiotic treatment. Clin Microbiol Infect 19:629–633. https://doi.org/10.1111/j.1469-0691.2012.03965.x

    Article  CAS  PubMed  Google Scholar 

  26. Tabah A, Koulenti D, Laupland K et al (2012) Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med 38:1930–1945. https://doi.org/10.1007/s00134-012-2695-9

    Article  PubMed  Google Scholar 

  27. Lee A, Mirrett S, Reller LB, Weinstein MP (2007) Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol 45:3546–3548. https://doi.org/10.1128/JCM.01555-07

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cockerill FR, Wilson JW, Vetter EA et al (2004) Optimal testing parameters for blood cultures. Clin Infect Dis 38:1724–1730. https://doi.org/10.1086/421087

    Article  PubMed  Google Scholar 

  29. Cheng MP, Stenstrom R, Paquette K et al (2019) Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis: a diagnostic study. Ann Intern Med. https://doi.org/10.7326/M19-1696

    Article  PubMed  Google Scholar 

  30. Georgevici AI, Terblanche M (2019) Neural networks and deep learning: a brief introduction. Intensive Care Med 45:712–714. https://doi.org/10.1007/s00134-019-05537-w

    Article  PubMed  Google Scholar 

  31. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45:486–552. https://doi.org/10.1097/CCM.0000000000002255

    Article  PubMed  Google Scholar 

  32. Levy MM, Evans LE, Rhodes A (2018) The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med 44:925–928. https://doi.org/10.1007/s00134-018-5085-0

    Article  CAS  PubMed  Google Scholar 

  33. Paul M, Bishara J, Yahav D, et al (2015) Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by meticillin resistant Staphylococcus aureus: randomised controlled trial. BMJ https://www.ncbi.nlm.nih.gov/pubmed/25977146

  34. Vidal L, Gafter-Gvili A, Borok S et al (2007) Efficacy and safety of aminoglycoside monotherapy: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkm193

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Belina Neuberger for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Roimi.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest, nor did they receive any financial support for the current study. The code of the models was uploaded into GitHub under “ICU-acquired BSI prediction model”.

Ethical approval

The study was approved by the independent ethics committee of Rambam Health Care Campus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 448 kb)

Supplementary material 2 (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roimi, M., Neuberger, A., Shrot, A. et al. Early diagnosis of bloodstream infections in the intensive care unit using machine-learning algorithms . Intensive Care Med 46, 454–462 (2020). https://doi.org/10.1007/s00134-019-05876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-019-05876-8

Keywords

Navigation