Skip to main content

Small volume resuscitation with 20% albumin in intensive care: physiological effects

The SWIPE randomised clinical trial

Abstract

Purpose

We set out to assess the resuscitation fluid requirements and physiological and clinical responses of intensive care unit (ICU) patients resuscitated with 20% albumin versus 4–5% albumin.

Methods

We performed a randomised controlled trial in 321 adult patients requiring fluid resuscitation within 48 h of admission to three ICUs in Australia and the UK.

Results

The cumulative volume of resuscitation fluid at 48 h (primary outcome) was lower in the 20% albumin group than in the 4–5% albumin group [median difference − 600 ml, 95% confidence interval (CI) − 800 to − 400; P < 0.001]. The 20% albumin group had lower cumulative fluid balance at 48 h (mean difference − 576 ml, 95% CI − 1033 to − 119; P = 0.01). Peak albumin levels were higher but sodium and chloride levels lower in the 20% albumin group. Median (interquartile range) duration of mechanical ventilation was 12.0 h (7.6, 33.1) in the 20% albumin group and 15.3 h (7.7, 58.1) in the 4–5% albumin group (P = 0.13); the proportion of patients commenced on renal replacement therapy after randomization was 3.3% and 4.2% (P = 0.67), respectively, and the proportion discharged alive from ICU was 97.4% and 91.1% (P = 0.02).

Conclusions

Resuscitation with 20% albumin decreased resuscitation fluid requirements, minimized positive early fluid balance and was not associated with any evidence of harm compared with 4–5% albumin. These findings support the safety of further exploration of resuscitation with 20% albumin in larger randomised trials.

Trial registration

http://www.anzctr.org.au. Identifier ACTRN12615000349549.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C (2015) Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 19:26

    Article  Google Scholar 

  2. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    CAS  Article  Google Scholar 

  3. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, Iapichino G, Antonelli M, Parrini V, Fiore G, Latini R, Gattinoni L (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370:1412–1421

    CAS  Article  Google Scholar 

  4. Baron JF, De Kegel D, Prost AC, Mundler O, Arthaud M, Basset G, Maistre G, Masson F, Carayon A, Landault C et al (1991) Low molecular weight hydroxyethyl starch 6% compared to albumin 4% during intentional hemodilution. Intensive Care Med 17:141–148

    CAS  Article  Google Scholar 

  5. Rehm M, Orth V, Kreimeier U, Thiel M, Haller M, Brechtelsbauer H, Finsterer U (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92:657–664

    CAS  Article  Google Scholar 

  6. Rehm M, Haller M, Orth V, Kreimeier U, Jacob M, Dressel H, Mayer S, Brechtelsbauer H, Finsterer U (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856

    CAS  Article  Google Scholar 

  7. Riddez L, Hahn RG, Brismar B, Strandberg A, Svensen C, Hedenstierna G (1997) Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Crit Care Med 25:635–640

    CAS  Article  Google Scholar 

  8. Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, Burges A, Conzen P, Rehm M (2012) The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care 16:R86

    Article  Google Scholar 

  9. Margarson MP, Soni NC (2004) Changes in serum albumin concentration and volume expanding effects following a bolus of albumin 20% in septic patients. Br J Anaesth 92:821–826

    CAS  Article  Google Scholar 

  10. Bannard-Smith J, Alexander P, Glassford N, Chan MJ, Lee M, Wong BT, Crawford G, Bailey M, Bellomo R (2015) Haemodynamic and biochemical responses to fluid bolus therapy with human albumin solution, 4% versus 20%, in critically ill adults. Crit Care Resusc 17:122–128

    PubMed  Google Scholar 

  11. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74

    Article  Google Scholar 

  12. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuiness S, Norton R, Myburgh J, Scheinkestel C, Su S (2012) An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med 40:1753–1760

    Article  Google Scholar 

  13. Acheampong A, Vincent JL (2015) A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care 19:251

    Article  Google Scholar 

  14. Garzotto F, Ostermann M, Martin-Langerwerf D, Sanchez-Sanchez M, Teng J, Robert R, Marinho A, Herrera-Gutierrez ME, Mao HJ, Benavente D, Kipnis E, Lorenzin A, Marcelli D, Tetta C, Ronco C (2016) The dose response multicentre investigation on fluid assessment (DoReMIFA) in critically ill patients. Crit Care 20:196

    CAS  Article  Google Scholar 

  15. Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, Blackwood B, Fan E (2017) Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 43:155–170

    Article  Google Scholar 

  16. Moran M, Kapsner C (1987) Acute renal failure associated with elevated plasma oncotic pressure. N Engl J Med 317:150–153

    CAS  Article  Google Scholar 

  17. Schortgen F, Girou E, Deye N, Brochard L, Group CS (2008) The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 34:2157–2168

    Article  Google Scholar 

  18. Honore PM, Joannes-Boyau O, Boer W (2008) Hyperoncotic colloids in shock and risk of renal injury: enough evidence for a banning order? Intensive Care Med 34:2127–2129

    Article  Google Scholar 

  19. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228

    CAS  Article  Google Scholar 

  20. Kellum JA, Lameire N (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care 17:204

    Article  Google Scholar 

  21. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911

    CAS  Article  Google Scholar 

  22. Bihari S, Prakash S, Bersten AD (2013) Post resuscitation fluid boluses in severe sepsis or septic shock: prevalence and efficacy (price study). Shock 40:28–34

    Article  Google Scholar 

  23. Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettila V, Aaen A, Lodahl D, Berthelsen RE, Christensen H, Madsen MB, Winkel P, Wetterslev J, Perner A, CLASSIC Trial Group, Scandinavian Critical Care Trials Group (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med 42:1695–1705

    Article  Google Scholar 

  24. Martensson J, Bellomo R (2015) Are all fluids bad for the kidney? Curr Opin Crit Care 21:292–301

    Article  Google Scholar 

  25. Bihari S, Prakash S, Bersten AD (2014) Early changes in serum electrolytes and acid–base status with administration of 4% albumin. Intensive Care Med 40:1392–1393

    Article  Google Scholar 

  26. Mallat J, Meddour M, Lemyze M, Durville E, Pepy F, Temime J, Vangrunderbeeck N, Tronchon L, Thevenin D (2016) Effects of a rapid infusion of 20% human serum albumin solution on acid–base status and electrolytes in critically ill patients. Intensive Care Med 42:128–129

    Article  Google Scholar 

  27. Wilcox CS (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71:726–735

    CAS  Article  Google Scholar 

  28. Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M (2015) Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med 41:257–264

    CAS  Article  Google Scholar 

  29. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 255:821–829

    Article  Google Scholar 

  30. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, McGuinness S, Mehrtens J, Myburgh J, Psirides A, Reddy S, Bellomo R (2015) Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA 314:1701–1710

    CAS  Article  Google Scholar 

  31. Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, Wang L, Byrne DW, Shaw AD, Bernard GR, Rice TW, SALT Investigators, The Pragmatic Critical Care Research Group (2017) Balanced crystalloids versus saline in the intensive care unit. The SALT randomized trial. Am J Respir Crit Care Med 195:1362–1372

    Article  Google Scholar 

  32. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, Slovis CM, Lindsell CJ, Ehrenfeld JM, Siew ED, Shaw AD, Bernard GR, Rice TW, SALT-ED Investigators (2018) Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med 378:819–828

    Article  Google Scholar 

  33. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, Stollings JL, Kumar AB, Hughes CG, Hernandez A, Guillamondegui OD, May AK, Weavind L, Casey JD, Siew ED, Shaw AD, Bernard GR, Rice TW, SMART Investigators, The Pragmatic Critical Care Research Group (2018) Balanced crystalloids versus saline in critically ill adults. N Engl J Med 378:829–839

    Article  Google Scholar 

  34. Lawrence MG, Altenburg MK, Sanford R, Willett JD, Bleasdale B, Ballou B, Wilder J, Li F, Miner JH, Berg UB, Smithies O (2017) Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc Natl Acad Sci USA 114:2958–2963

    CAS  Article  Google Scholar 

  35. Lee EH, Kim WJ, Kim JY, Chin JH, Choi DK, Sim JY, Choo SJ, Chung CH, Lee JW, Choi IC (2016) Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl. Anesthesiology 124:1001–1011

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Australian and New Zealand Intensive Care Foundation and CSL Behring (UK) funded the study. The SWIPE trial investigators would like to thank Dr Ying Yan Zhu and Dr Jason Musci for their help with obtaining consent from patients and relatives, and Elisha Matheson, Kate Schwartz and Kate Norman from Flinders Medical Centre and Leah Peck and Helen Young from Austin Hospital for their help with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Mårtensson.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Supplementary material 2 (DOCX 129 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mårtensson, J., Bihari, S., Bannard-Smith, J. et al. Small volume resuscitation with 20% albumin in intensive care: physiological effects. Intensive Care Med 44, 1797–1806 (2018). https://doi.org/10.1007/s00134-018-5253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-018-5253-2

Keywords

  • Albumin
  • Fluid therapy
  • Critical care
  • Resuscitation