Intensive Care Medicine

, Volume 44, Issue 6, pp 811–822 | Cite as

Perioperative myocardial injury and the contribution of hypotension

  • Daniel I. SesslerEmail author
  • Ashish K. Khanna


Mortality in the month following surgery is about 1000 times greater than anesthesia-related intraoperative mortality, and myocardial injury appears to be the leading cause. There is currently no known safe prophylaxis for postoperative myocardial injury, but there are strong associations among hypotension and myocardial injury, renal injury, and death. During surgery, the harm threshold is a mean arterial pressure of about 65 mmHg. In critical care units, the threshold appears to be considerably greater, perhaps 90 mmHg. The threshold triggering injury on surgical wards remains unclear but may be in between. Much of the association between hypotension and serious complications surely results from residual confounding, but sparse randomized data suggest that at least some harm can be prevented by intervening to limit hypotension. Reducing hypotension may therefore improve perioperative outcomes.


Anesthesia Critical care Blood pressure Hypotension Myocardial injury Renal injury Mortality 


Author contributions

Both authors contributed to manuscript drafting and approved the final manuscript.


Supported by internal funds only. Dr. Sessler consults for Edwards Lifesciences; Dr. Khanna consults for La Jolla Pharmaceuticals.


  1. 1.
    Lienhart A, Auroy Y, Pequignot F, Benhamou D, Warszawski J, Bovet M, Jougla E (2006) Survey of anesthesia-related mortality in France. Anesthesiology 105(6):1087–1097PubMedCrossRefGoogle Scholar
  2. 2.
    Li G, Warner M, Lang BH, Huang L, Sun LS (2009) Epidemiology of anesthesia-related mortality in the United States, 1999–2005. Anesthesiology 110(4):759–765PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fecho K, Lunney AT, Boysen PG, Rock P, Norfleet EA (2008) Postoperative mortality after inpatient surgery: incidence and risk factors. Ther Clin Risk Manag 4(4):681–688PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Semel ME, Lipsitz SR, Funk LM, Bader AM, Weiser TG, Gawande AA (2012) Rates and patterns of death after surgery in the United States, 1996 and 2006. Surgery 151(2):171–182PubMedCrossRefGoogle Scholar
  5. 5.
    Smilowitz NR, Gupta N, Ramakrishna H, Guo Y, Berger JS, Bangalore S (2017) Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol 2(2):181–187PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bartels K, Karhausen J, Clambey ET, Grenz A, Eltzschig HK (2013) Perioperative organ injury. Anesthesiology 119(6):1474–1489PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    The Vascular Events In Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators (2012) Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA 307(21):2295–2304CrossRefGoogle Scholar
  8. 8.
    Writing Committee for the Vision Study Investigators, Devereaux PJ, Biccard BM, Sigamani A, Xavier D, Chan MTV, Srinathan SK, Walsh M, Abraham V, Pearse R et al (2017) Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA 317(16):1642–1651CrossRefGoogle Scholar
  9. 9.
    The Vascular events In noncardiac Surgery patIents cOhort evaluatioN (VISION) Investigators (2014) Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology 120(3):564–578CrossRefGoogle Scholar
  10. 10.
    Botto F, Alonso-Coello P, Chan MT, Villar JC, Xavier D, Srinathan S, Guyatt G, Cruz P, Graham M, Wang CY et al (2014) Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology 120(3):564–578PubMedCrossRefGoogle Scholar
  11. 11.
    Devereaux PJ, Sessler DI (2015) Cardiac complications in patients undergoing major noncardiac surgery. N Engl J Med 373(23):2258–2269PubMedCrossRefGoogle Scholar
  12. 12.
    Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, Xavier D, Chrolavicius S, Greenspan L, Pogue J et al (2008) Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371(9627):1839–1847PubMedCrossRefGoogle Scholar
  13. 13.
    Devereaux PJ on behalf of the POISE-2 Investigators (2014) Rationale and design of the PeriOperative ISchemic Evaluation-2 (POISE-2) trial: an international 2 × 2 factorial randomized controlled trial of acetyl-salicylic acid versus placebo and clonidine versus placebo in patients undergoing noncardiac surgery. Am Heart J 167(6):804–809CrossRefGoogle Scholar
  14. 14.
    Devereaux PJ, Mrkobrada M, Sessler DI, Leslie K, Alonso-Coello P, Kurz A, Villar JC, Sigamani A, Biccard BM, Meyhoff CS et al (2014) Aspirin in patients undergoing noncardiac surgery. N Engl J Med 370(16):1494–1503PubMedCrossRefGoogle Scholar
  15. 15.
    Devereaux PJ, Sessler DI, Leslie K, Kurz A, Mrkobrada M, Alonso-Coello P, Villar JC, Sigamani A, Biccard BM, Meyhoff CS et al (2014) Clonidine in patients undergoing noncardiac surgery. N Engl J Med 370(16):1504–1513PubMedCrossRefGoogle Scholar
  16. 16.
    Bijker JB, Gelb AW (2012) Review article: the role of hypotension in perioperative stroke. Can J Anaesth. PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Bijker JB, van Klei WA, Kappen TH, van Wolfswinkel L, Moons KG, Kalkman CJ (2007) Incidence of intraoperative hypotension as a function of the chosen definition: literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology 107(2):213–220PubMedCrossRefGoogle Scholar
  18. 18.
    van Waes JA, van Klei WA, Wijeysundera DN, van Wolfswinkel L, Lindsay TF, Beattie WS (2016) Association between intraoperative hypotension and myocardial injury after vascular surgery. Anesthesiology 124(1):35–44PubMedCrossRefGoogle Scholar
  19. 19.
    Sun LY, Wijeysundera DN, Tait GA, Beattie WS (2015) Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology 123(3):515–523PubMedCrossRefGoogle Scholar
  20. 20.
    Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V et al (2017) Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 318(14):1346–1357PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wu X, Jiang Z, Ying J, Han Y, Chen Z (2017) Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: a randomized study: optimal blood pressure reduces acute kidney injury. J Clin Anesth 43:77–83PubMedCrossRefGoogle Scholar
  22. 22.
    Monk TG, Bronsert MR, Henderson WG, Mangione MP, Sum-Ping ST, Bentt DR, Nguyen JD, Richman JS, Meguid RA, Hammermeister KE (2015) Association between intraoperative hypotension and hypertension and 30-day postoperative mortality in noncardiac surgery. Anesthesiology 123(2):307–319PubMedCrossRefGoogle Scholar
  23. 23.
    Mascha EJ, Yang D, Weiss S, Sessler DI (2015) Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery. Anesthesiology 123:79–91PubMedCrossRefGoogle Scholar
  24. 24.
    Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, Kurz A (2017) Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology 126(1):47–65PubMedCrossRefGoogle Scholar
  25. 25.
    Hsieh JK, Dalton JE, Yang D, Farag ES, Sessler DI, Kurz AM (2016) The association between mild intraoperative hypotension and stroke in general surgery patients. Anesth Analg 123(4):933–939PubMedCrossRefGoogle Scholar
  26. 26.
    Roshanov PS, Rochwerg B, Patel A, Salehian O, Duceppe E, Belley-Cote EP, Guyatt GH, Sessler DI, Le Manach Y, Borges FK et al (2017) Withholding versus continuing angiotensin-converting enzyme inhibitors or angiotensin ii receptor blockers before noncardiac surgery: an analysis of the vascular events in noncardiac surgery patients cohort evaluation prospective cohort. Anesthesiology 126(1):16–27PubMedCrossRefGoogle Scholar
  27. 27.
    Abbott TEF, Pearse RM, Archbold RA, Ahmad T, Niebrzegowska E, Wragg A, Rodseth RN, Devereaux PJ, Ackland GL (2017) A prospective international multicentre cohort study of intraoperative heart rate and systolic blood pressure and myocardial injury after noncardiac surgery: results of the VISION study. Anesth Analg. PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sessler DI, Imrey PB (2015) Clinical research methodology 1: study designs and methodologic sources of error. Anesth Analg 121(4):1034–1042PubMedCrossRefGoogle Scholar
  29. 29.
    Sessler DI, Imrey PB (2015) Clinical research methodology 2: observational clinical research. Anesth Analg 121(4):1043–1051PubMedCrossRefGoogle Scholar
  30. 30.
    Panjasawatwong K, Sessler DI, Stapelfeldt WH, Mayers DB, Mascha EJ, Yang D, Kurz A (2015) A randomized trial of a supplemental alarm for critically low systolic blood pressure. Anesth Analg 121(6):1500–1507PubMedCrossRefGoogle Scholar
  31. 31.
    Rogers CA, Stoica S, Ellis L, Stokes EA, Wordsworth S, Dabner L, Clayton G, Downes R, Nicholson E, Bennett S et al (2017) Randomized trial of near-infrared spectroscopy for personalized optimization of cerebral tissue oxygenation during cardiac surgery. Br J Anaesth 119(3):384–393PubMedCrossRefGoogle Scholar
  32. 32.
    Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119(3):507–515PubMedCrossRefGoogle Scholar
  33. 33.
    Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vasquez SM, Balaji P, Alvarez-Garcia J, Cavalcanti AB, Parlow JL et al (2018) Period-dependent associations between hypotension during and for 4 days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 trial. Anesthesiology 128(2):317–327PubMedCrossRefGoogle Scholar
  34. 34.
    Khanna A, Mao G, Liu L, Yang D, Perez-Protto S, Chodavarapu P, Schacham Y, Mascha E, Sessler D (2018) Hypotension increases acute kidney injury, myocardial injury and mortality in surgical critical care. Crit Care Med 46(1):71CrossRefGoogle Scholar
  35. 35.
    Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensiv Care Med 41(8):1411–1423CrossRefGoogle Scholar
  36. 36.
    Badin J, Boulain T, Ehrmann S, Skarzynski M, Bretagnol A, Buret J, Benzekri-Lefevre D, Mercier E, Runge I, Garot D et al (2011) Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit Care 15(3):R135PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Poukkanen M, Wilkman E, Vaara ST, Pettila V, Kaukonen KM, Korhonen AM, Uusaro A, Hovilehto S, Inkinen O, Laru-Sompa R et al (2013) Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care 17(6):R295PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bagshaw SM, George C, Bellomo R (2008) Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 12(2):R47PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hayhurst CJ, Pandharipande PP, Hughes CG (2016) Intensive care unit delirium: a review of diagnosis, prevention, and treatment. Anesthesiology 125(6):1229–1241PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Patti R, Saitta M, Cusumano G, Termine G, Di Vita G (2011) Risk factors for postoperative delirium after colorectal surgery for carcinoma. Eur J Oncol Nurs 15(5):519–523PubMedCrossRefGoogle Scholar
  41. 41.
    Tognoni P, Simonato A, Robutti N, Pisani M, Cataldi A, Monacelli F, Carmignani G, Odetti P (2011) Preoperative risk factors for postoperative delirium (POD) after urological surgery in the elderly. Arch Gerontol Geriatr 52(3):e166–e169PubMedCrossRefGoogle Scholar
  42. 42.
    Hirsch J, DePalma G, Tsai TT, Sands LP, Leung JM (2015) Impact of intraoperative hypotension and blood pressure fluctuations on early postoperative delirium after non-cardiac surgery. Br J Anaesth 115(3):418–426PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Aldemir M, Ozen S, Kara IH, Sir A, Bac B (2001) Predisposing factors for delirium in the surgical intensive care unit. Crit Care 5(5):265–270PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dunser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, Daudel F, Lepper P, Hasibeder WR, Jakob SM (2009) Arterial blood pressure during early sepsis and outcome. Intensiv Care Med 35(7):1225–1233CrossRefGoogle Scholar
  45. 45.
    Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V (2005) Hemodynamic variables related to outcome in septic shock. Intensiv Care Med 31(8):1066–1071CrossRefGoogle Scholar
  46. 46.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensiv Care Med 43(3):304–377CrossRefGoogle Scholar
  47. 47.
    Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, Mira JP, Dequin PF, Gergaud S, Weiss N et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370(17):1583–1593PubMedCrossRefGoogle Scholar
  48. 48.
    Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33(4):780–786PubMedCrossRefGoogle Scholar
  49. 49.
    Thooft A, Favory R, Salgado DR, Taccone FS, Donadello K, De Backer D, Creteur J, Vincent JL (2011) Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care 15(5):R222PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lamontagne F, Meade MO, Hebert PC, Asfar P, Lauzier F, Seely AJE, Day AG, Mehta S, Muscedere J, Bagshaw SM et al (2016) Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensiv Care Med 42(4):542–550CrossRefGoogle Scholar
  51. 51.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28(8):2729–2732PubMedCrossRefGoogle Scholar
  52. 52.
    Mascha EJ, Yang D, Weiss S, Sessler DI (2015) Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery. Anesthesiology 123(1):79–91PubMedCrossRefGoogle Scholar
  53. 53.
    Matsukawa T, Sessler DI, Sessler AM, Schroeder M, Ozaki M, Kurz A, Cheng C (1995) Heat flow and distribution during induction of general anesthesia. Anesthesiology 82(3):662–673PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  1. 1.Department of Outcomes ResearchAnesthesiology Institute, Cleveland ClinicClevelandUSA
  2. 2.Departments of General Anesthesiology and Center for Critical CareAnesthesiology Institute, Cleveland ClinicClevelandUSA

Personalised recommendations