Advertisement

Intensive Care Medicine

, Volume 44, Issue 6, pp 847–856 | Cite as

Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients

  • Valentine Léopold
  • Etienne Gayat
  • Romain Pirracchio
  • Jindrich Spinar
  • Jiri Parenica
  • Tuukka Tarvasmäki
  • Johan Lassus
  • Veli-Pekka Harjola
  • Sébastien Champion
  • Faiez Zannad
  • Serafina Valente
  • Philip Urban
  • Horng-Ruey Chua
  • Rinaldo Bellomo
  • Batric Popovic
  • Dagmar M. Ouweneel
  • José P. S. Henriques
  • Gregor Simonis
  • Bruno Lévy
  • Antoine Kimmoun
  • Philippe Gaudard
  • Mir Babar Basir
  • Andrej Markota
  • Christoph Adler
  • Hannes Reuter
  • Alexandre MebazaaEmail author
  • Tahar Chouihed
Systematic Review

Abstract

Objective

Catecholamines have been the mainstay of pharmacological treatment of cardiogenic shock (CS). Recently, use of epinephrine has been associated with detrimental outcomes. In the present study we aimed to evaluate the association between epinephrine use and short-term mortality in all-cause CS patients.

Design

We performed a meta-analysis of individual data with prespecified inclusion criteria: (1) patients in non-surgical CS treated with inotropes and/or vasopressors and (2) at least 15% of patients treated with epinephrine administrated alone or in association with other inotropes/vasopressors. The primary outcome was short-term mortality.

Measurements and results

Fourteen published cohorts and two unpublished data sets were included. We studied 2583 patients. Across all cohorts of patients, the incidence of epinephrine use was 37% (17–76%) and short-term mortality rate was 49% (21–69%). A positive correlation was found between percentages of epinephrine use and short-term mortality in the CS cohort. The risk of death was higher in epinephrine-treated CS patients (OR [CI] = 3.3 [2.8–3.9]) compared to patients treated with other drug regimens. Adjusted mortality risk remained striking in epinephrine-treated patients (n = 1227) (adjusted OR = 4.7 [3.4–6.4]). After propensity score matching, two sets of 338 matched patients were identified and epinephrine use remained associated with a strong detrimental impact on short-term mortality (OR = 4.2 [3.0–6.0]).

Conclusions

In this very large cohort, epinephrine use for hemodynamic management of CS patients is associated with a threefold increase of risk of death.

Keywords

Meta-analysis Cardiogenic shock Epinephrine Prognosis 

Notes

Compliance with ethical standards

Conflict of interest

AM received lecture fees from Novartis, Orion and Abbott, research grants from Roche and consultant fees from Servier and Sanofi. Other coauthors have no conflicts to declare.

Authors' comment

One of the two unpublished data set-the one of Basir-was published after data extraction, and is refered as [35].

Supplementary material

134_2018_5222_MOESM1_ESM.docx (145 kb)
Supplementary material 1 (DOCX 144 kb)

References

  1. 1.
    Reynolds HR, Hochman JS (2008) Cardiogenic shock: current concepts and improving outcomes. Circulation 117:686–697.  https://doi.org/10.1161/CIRCULATIONAHA.106.613596 CrossRefPubMedGoogle Scholar
  2. 2.
    Prondzinsky R, Unverzagt S, Russ M et al (2012) Hemodynamic effects of intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective, randomized IABP shock trial. Shock 37:378–384.  https://doi.org/10.1097/SHK.0b013e31824a67af CrossRefPubMedGoogle Scholar
  3. 3.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol 69:1167.  https://doi.org/10.1016/j.rec.2016.11.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Van Diepen S, Katz JN, Albert NM et al (2017) Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation 136:e232–e268CrossRefPubMedGoogle Scholar
  5. 5.
    Mebazaa A, Parissis J, Porcher R et al (2011) Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods. Intensive Care Med 37:290–301.  https://doi.org/10.1007/s00134-010-2073-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Mebazaa A, Motiejunaite J, Gayat E et al (2018) Long-term safety of intravenous cardiovascular agents in acute heart failure: results from the European Society of Cardiology Heart Failure Long-Term Registry. Eur J Heart Fail 20:332–341.  https://doi.org/10.1002/ejhf.991 CrossRefPubMedGoogle Scholar
  7. 7.
    Kirsch M, Vermes E, Radu C et al (2008) Impact of preoperative hemodynamic support on early outcome in patients assisted with paracorporeal Thoratec ventricular assist device. Eur J Cardiothorac Surg 34:262–267.  https://doi.org/10.1016/j.ejcts.2008.03.057 CrossRefPubMedGoogle Scholar
  8. 8.
    Schreiber W, Herkner H, Koreny M et al (2002) Predictors of survival in unselected patients with acute myocardial infarction requiring continuous catecholamine support. Resuscitation 55:269–276CrossRefPubMedGoogle Scholar
  9. 9.
    Tarvasmäki T, Lassus J, Varpula M et al (2016) Current real-life use of vasopressors and inotropes in cardiogenic shock—adrenaline use is associated with excess organ injury and mortality. Crit Care 20:208.  https://doi.org/10.1186/s13054-016-1387-1 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Levy B, Perez P, Perny J et al (2011) Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med 39:450–455.  https://doi.org/10.1097/CCM.0b013e3181ffe0eb CrossRefPubMedGoogle Scholar
  11. 11.
    Levy B, Clere-Jehl R, Legras A, Morichau-Beauchant T, Leone M, Ganster F, Quenot JP, Kimmoun A, Cariou A, Lassus J, Harjola VP, Meziani F, Louis G, Rossignol P, Duarte K, Girerd N, Mebazaa A, Vignon P. Epinephrine versus norepinephrine in cardiogenic shock after acute myocardial infarction. A double-blind, multicenter randomized study. J Am Coll Cardiol. In press.Google Scholar
  12. 12.
    Stewart LA, Clarke M, Rovers M et al (2015) Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA 313:1657–1665.  https://doi.org/10.1001/jama.2015.3656 CrossRefPubMedGoogle Scholar
  13. 13.
    Wells GA, Shea B, O’Connell D et al (2013) The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Ottawa Hosp Res Inst.  https://doi.org/10.2307/632432 CrossRefGoogle Scholar
  14. 14.
    Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48CrossRefGoogle Scholar
  15. 15.
    Gayat E, Pirracchio R, Resche-Rigon M et al (2010) Propensity scores in intensive care and anaesthesiology literature: a systematic review. Intensive Care Med 36:1993–2003.  https://doi.org/10.1007/s00134-010-1991-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Zobel C, Adler C, Kranz A et al (2012) Mild therapeutic hypothermia in cardiogenic shock syndrome. Crit Care Med 40:1715–1723.  https://doi.org/10.1097/CCM.0b013e318246b820 CrossRefPubMedGoogle Scholar
  17. 17.
    Spinar J, Parenica J, Vitovec J et al (2011) Baseline characteristics and hospital mortality in the acute heart failure database (AHEAD) main registry. Crit Care 15:R291.  https://doi.org/10.1186/cc10584 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Champion S, Gaüzère BA, Vandroux D et al (2014) Dobutamine infusion and absence of pulmonary hypertension are associated with decreased mortality in a cohort of 249 patients with cardiogenic shock. Health 06:2408–2415.  https://doi.org/10.4236/health.2014.618277 CrossRefGoogle Scholar
  19. 19.
    Chua H-R, Glassford N, Bellomo R (2012) Acute kidney injury after cardiac arrest. Resuscitation 83:721–727.  https://doi.org/10.1016/j.resuscitation.2011.11.030 CrossRefPubMedGoogle Scholar
  20. 20.
    Zannad F, Mebazaa A, Juillière Y et al (2006) Clinical profile, contemporary management and 1-year mortality in patients with severe acute heart failure syndromes: the EFICA study. Eur J Heart Fail 8:697–705.  https://doi.org/10.1016/j.ejheart.2006.01.001 CrossRefPubMedGoogle Scholar
  21. 21.
    Gaudard P, Mourad M, Eliet J et al (2015) Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care 19:363.  https://doi.org/10.1186/s13054-015-1073-8 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Popovic B, Fay R, Cravoisy-Popovic A, Levy B (2014) Cardiac power index, mean arterial pressure, and Simplified Acute Physiology Score II are strong predictors of survival and response to revascularization in cardiogenic shock. Shock 42:22–26.  https://doi.org/10.1097/SHK.0000000000000170 CrossRefPubMedGoogle Scholar
  23. 23.
    Valente S, Lazzeri C, Crudeli E et al (2012) Intraaortic balloon pump: incidence and predictors of complications in the Florence registry. Clin Cardiol 35:200–204.  https://doi.org/10.1002/clc.20975 CrossRefPubMedGoogle Scholar
  24. 24.
    Ouweneel DM, Eriksen E, Sjauw KD et al (2017) Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 69:278–287.  https://doi.org/10.1016/j.jacc.2016.10.022 CrossRefPubMedGoogle Scholar
  25. 25.
    Simonis G, Steiding K, Schaefer K et al (2012) A prospective, randomized trial of continuous lateral rotation (“kinetic therapy”) in patients with cardiogenic shock. Clin Res Cardiol 101:955–962.  https://doi.org/10.1007/s00392-012-0484-7 CrossRefPubMedGoogle Scholar
  26. 26.
    Urban P, Stauffer JC, Bleed D et al (1999) A randomized evaluation of early revascularization to treat shock complicating acute myocardial infarction. The (Swiss) multicenter trial of angioplasty for shock-(S)MASH. Eur Heart J 20:1030–1038.  https://doi.org/10.1053/euhj.1998.1353 CrossRefPubMedGoogle Scholar
  27. 27.
    Napp LC, Kühn C, Bauersachs J (2017) ECMO in cardiac arrest and cardiogenic shock. Herz 42:27–44.  https://doi.org/10.1007/s00059-016-4523-4 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang L, Sun S, Fang X et al (2006) Simultaneous blockade of alpha1- and beta-actions of epinephrine during cardiopulmonary resuscitation. Crit Care Med 34:S483–S485.  https://doi.org/10.1097/01.CCM.0000247724.19004.EB CrossRefPubMedGoogle Scholar
  29. 29.
    Benthem L, van der Leest J, Meeuwsen WP et al (1990) The effect of epinephrine on oxygen consumption, overall energy metabolism, and substrate utilization in rats. Adv Exp Med Biol 277:851–860CrossRefPubMedGoogle Scholar
  30. 30.
    Vincent J-L, De Backer D (2013) Circulatory shock. N Engl J Med 369:1726–1734.  https://doi.org/10.1056/NEJMra1208943 CrossRefPubMedGoogle Scholar
  31. 31.
    Ristagno G, Tang W, Huang L et al (2009) Epinephrine reduces cerebral perfusion during cardiopulmonary resuscitation. Crit Care Med 37:1408–1415.  https://doi.org/10.1097/CCM.0b013e31819cedc9 CrossRefPubMedGoogle Scholar
  32. 32.
    Tang W, Weil MH, Sun S et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093CrossRefPubMedGoogle Scholar
  33. 33.
    Thiele H, Ohman EM, Desch S et al (2015) Management of cardiogenic shock. Eur Heart J 36:1223–1230.  https://doi.org/10.1093/eurheartj/ehv051 CrossRefPubMedGoogle Scholar
  34. 34.
    Schumann J, Henrich EC, Strobl H et al (2018) Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD009669.pub3 CrossRefPubMedGoogle Scholar
  35. 35.
    Basir MB, Schreiber T, Dixon S, Alaswad K, Patel K, Almany S, Khandelwal A, Hanson I, George A, Ashbrook M, Blank N, Abdelsalam M, Sareen N, Timmis SBH, O'Neill WW (2018) Feasibility of early mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock: the detroit cardiogenic shock initiative. Catheterization and Cardiovascular Interventions 91(3):454–461CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  • Valentine Léopold
    • 1
  • Etienne Gayat
    • 1
  • Romain Pirracchio
    • 2
  • Jindrich Spinar
    • 3
  • Jiri Parenica
    • 3
  • Tuukka Tarvasmäki
    • 4
    • 5
  • Johan Lassus
    • 4
  • Veli-Pekka Harjola
    • 4
  • Sébastien Champion
    • 6
  • Faiez Zannad
    • 7
  • Serafina Valente
    • 8
  • Philip Urban
    • 9
  • Horng-Ruey Chua
    • 10
    • 11
    • 12
    • 13
    • 14
  • Rinaldo Bellomo
    • 10
    • 11
    • 12
    • 13
  • Batric Popovic
    • 15
  • Dagmar M. Ouweneel
    • 16
  • José P. S. Henriques
    • 16
  • Gregor Simonis
    • 17
    • 18
  • Bruno Lévy
    • 19
  • Antoine Kimmoun
    • 19
  • Philippe Gaudard
    • 20
  • Mir Babar Basir
    • 21
  • Andrej Markota
    • 22
  • Christoph Adler
    • 23
  • Hannes Reuter
    • 23
  • Alexandre Mebazaa
    • 1
    • 24
    Email author
  • Tahar Chouihed
    • 1
    • 7
    • 25
    • 26
  1. 1.Department of Anesthesiology and Critical Care, APHP - Saint Louis Lariboisière University HospitalsUniversity Paris Diderot and INSERM UMR-S 942ParisFrance
  2. 2.Department of Anesthesiology and Critical Care MedicineHôpital Européen Georges PompidouParisFrance
  3. 3.Cardiology Department, University Hospital Brno and Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  4. 4.Emergency Medicine, University of Helsinki and Department of Emergency Medicine and ServicesHelsinki University HospitalHelsinkiFinland
  5. 5.Heart and Lung CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  6. 6.Intensive Care UnitUniversity Hospital Félix GuyonSaint DenisFrance
  7. 7.CIC-Plurithématique, INSERM, University Hospital of NancyNancyFrance
  8. 8.Intensive Cardiac Care UnitFlorence University Hospital, CareggiFlorenceItaly
  9. 9.Cardiovascular DepartmentHôpital de la TourMeyrin-GenevaSwitzerland
  10. 10.Department of Intensive CareAustin HospitalMelbourneAustralia
  11. 11.Australian and New Zealand Intensive Care Research Centre (ANZIC RC), School of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
  12. 12.School of Medicine, The University of MelbourneMelbourneAustralia
  13. 13.Department of Intensive CareRoyal Melbourne HospitalMelbourneAustralia
  14. 14.Division of NephrologyNational University Health System, University Medicine ClusterSingaporeSingapore
  15. 15.Cardiology DepartmentUniversity Hospital of NancyVandoeuvre-lès-NancyFrance
  16. 16.AMC Heart Center, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  17. 17.Department of Medicine/CardiologyHeart Center Dresden University of TechnologyDresdenGermany
  18. 18.Praxisklinik Herz und GefaesseDresdenGermany
  19. 19.Intensive Care Unit, Faculty of MedicineUniversity Hospital of Nancy, France, and U1116Vandoeuvre-lès-NancyFrance
  20. 20.Department of Anesthesiology and Critical Care Medicine, PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
  21. 21.Division of CardiologyHenry Ford HospitalDetroitUSA
  22. 22.Medical Intensive Care UnitUniversity Medical Centre MariborLjubljanskaSlovenia
  23. 23.Department of Internal Medicine IIIUniversity of CologneCologneGermany
  24. 24.Investigation Network Initiative – Cardiovascular and Renal Clinical TrialistsINI-CRCTNancyFrance
  25. 25.Emergency DepartmentUniversity Hospital of NancyNancyFrance
  26. 26.INSERM U1116, University of LorraineNancyFrance

Personalised recommendations